摘要:
A semiconductor device comprises a silicon substrate, an electrical wiring metal, an insulating film formed on the silicon substrate, a plurality of contact holes formed in the insulating film for connecting the silicon substrate and the electrical wiring metal to each other, and a titanium silicide film formed in the contact holes. The thickness of the titanium silicide film is 10 nm to 120 nm or, preferably, 20 nm to 84 nm. Semiconductor regions and the electrical wiring metal are connected to each other through the titanium silicide film.
摘要:
Disclosed is a method of fabricating a semiconductor device including forming an insulating film on a silicon substrate; forming a contact hole in the insulating film; depositing a titanium film to be in contact with the silicon substrate in the contact hole; and causing a heat reaction between the titanium film and the silicon substrate such that the titanium film is subjected to silicide reaction with the thickness 4 nm to 48 nm or, more preferably, with the thickness of 8 nm to 34 nm. In the instance where the contact hole is filled with doped polycrystal silicon material, the titanium film is deposited to be in contact with the polycrystal silicon in the contact hole. The silicon substrate/silicon body may have at least a MISFET formed thereon in which case the contact hole is formed to expose an active region of the MISFET, as one example.
摘要:
A semiconductor device comprises a silicon substrate, an electrical wiring metal, an insulating film formed on the silicon substrate, a plurality of contact holes formed in the insulating film for connecting the silicon substrate and the electrical wiring metal to each other, and a titanium silicide film formed in the contact holes. The thickness of the titanium silicide film is 10 nm to 120 nm or, preferably, 20 nm to 84 nm. Semiconductor regions and the electrical wiring metal are connected to each other through the titanium silicide film.
摘要:
A method for making a semiconductor integrated circuit device comprises the steps of: (a) depositing a first underlying film made of titanium nitride, on an insulating film having a plurality of through-holes; (b) depositing a tungsten film on the first underlying film, and etching the tungsten film back by means of a fluorine-containing plasma thereby leaving the tungsten film only in the connection holes; (c) sputter etching the surface of the first underlying film to remove the fluorine from the surface of the first underlying film; and (d) forming an aluminum film on the first underlying film. The semiconductor integrated circuit device obtained by the method is also described.
摘要:
A method for making a semiconductor integrated circuit device comprises the steps of: (a) depositing a first underlying film made of titanium nitride, on an insulating film having a plurality of through-holes; (b) depositing a tungsten film on the first underlying film, and etching the tungsten film back by means of a fluorine-containing plasma thereby leaving the tungsten film only in the connection holes; (c) sputter etching the surface of the first underlying film to remove the fluorine from the surface of the first underlying film; and (d) forming an aluminum film on the first underlying film. The semiconductor integrated circuit device obtained by the method is also described.
摘要:
A method for making a semiconductor integrated circuit device comprises the steps of: (a) depositing a first underlying film made of titanium nitride, on an insulating film having a plurality of through-holes; (b) depositing a tungsten film on the first underlying film, and etching the tungsten film back by means of a fluorine-containing plasma thereby leaving the tungsten film only in the connection holes; (c) sputter etching the surface of the first underlying film to remove the fluorine from the surface of the first underlying film; and (d) forming an aluminum film on the first underlying film. The semiconductor integrated circuit device obtained by the method is also described.
摘要:
A method for making a semiconductor integrated circuit device comprises the steps of: (a) depositing a first underlying film made of titanium nitride, on an insulating film having a plurality of through-holes; (b) depositing a tungsten film on the first underlying film, and etching the tungsten film back by means of a fluorine-containing plasma thereby leaving the tungsten film only in the connection holes; (c) sputter etching the surface of the first underlying film to remove the fluorine from the surface of the first underlying film; and (d) forming an aluminium film on the first underlying film. The semiconductor integrated circuit device obtained by the method is also described.
摘要:
A method for making a semiconductor integrated circuit device comprises the steps of: (a) depositing a first underlying film made of titanium nitride, on an insulating film having a plurality of through-holes; (b) depositing a tungsten film on the first underlying film, and etching the tungsten film back by means of a fluorine-containing plasma thereby leaving the tungsten film only in the connection holes; (c) sputter etching the surface of the first underlying film to remove the fluorine from the surface of the first underlying film; and (d) forming an aluminium film on the first underlying film. The semiconductor integrated circuit device obtained by the method is also described.
摘要:
A Co silicide layer having a low resistance and a small junction leakage current is formed on the surface of the gate electrode, source and drain of MOSFETS by silicidizing a Co film deposited on a main plane of a wafer by sputtering using a high purity Co target having a Co purity of at least 99.99% and Fe and Ni contents of not greater than 10 ppm, preferably having a Co purity of 99.999%.
摘要:
A Co silicide layer having a low resistance and a small junction leakage current is formed on the surface of the gate electrode, source and drain of MOSFETs by silicidizing a Co film deposited on a main plane of a wafer by sputtering using a high purity Co target having a Co purity of at least 99.99% and Fe and Ni contents of not greater than 10 ppm, preferably having a Co purity of 99.999%.