摘要:
An analysis device includes: a separation cavity 18 for separating a test liquid into a solution component and a solid component by using a centrifugal force; a higher specific gravity component quantitative cavity 23 for holding a portion of the separated solid component which has been transferred; a sample solution overflow cavity 22 arranged between the higher specific gravity component quantitative cavity 23 and the separation cavity 18 and connected to a connecting channel 21 for transporting the sample liquid from the separation cavity 18; and a capillary cavity 19 formed in the separation cavity 18 for temporarily holding a separated solution component (blood plasma) in the separation cavity 18. A blood plasma component 57a remaining in the separation cavity 18 is trapped by the capillary cavity 19.
摘要:
An analysis device includes: a separation cavity 18 for separating a test liquid into a solution component and a solid component by using a centrifugal force; a higher specific gravity component quantitative cavity 23 for holding a portion of the separated solid component which has been transferred; a sample solution overflow cavity 22 arranged between the higher specific gravity component quantitative cavity 23 and the separation cavity 18 and connected to a connecting channel 21 for transporting the sample liquid from the separation cavity 18; and a capillary cavity 19 formed in the separation cavity 18 for temporarily holding a separated solution component (blood plasma) in the separation cavity 18. A blood plasma component 57a remaining in the separation cavity 18 is trapped by the capillary cavity 19.
摘要:
A high-frequency package includes a first dielectric substrate having a signal line and a grounding conductor provided on a back side, a high-frequency element connected to a back side of the first dielectric substrate with a first connection conductor therebetween, a second dielectric substrate having a signal line and a grounding conductor provided on a front side facing the back side with the high-frequency element therebetween, and second connection conductors that are arranged so as to surround the high-frequency element and connect the grounding conductor on the back side of the first dielectric substrate and the grounding conductor on the front side of the second dielectric substrate. In the high-frequency package, a dielectric space surrounded by a conductor pattern is formed in the front side of the second dielectric substrate under the high-frequency element.
摘要:
Shielding of high-frequency circuits is achieved using a simple and inexpensive configuration not using any lid. A high-frequency circuit mounting substrate (20) is disposed, on an underside surface layer of which are disposed high-frequency circuits (21 and 22) and is formed a first grounding conductor that has same electric potential as grounding conductors of the high-frequency circuits and that surrounds the high-frequency circuits. A mother control substrate (3) is disposed, on which the high-frequency circuit mounting substrate (20) is mounted in such a way that the high-frequency circuits are sandwiched therebetween and on which a second grounding conductor is formed in a region facing the high-frequency circuits. Plural first lands are formed on the first grounding conductor of the high-frequency circuit mounting substrate (20) to surround the high-frequency circuits. Plural second lands are formed that are electrically connected to the second grounding conductor at positions on a surface layer of the mother control substrate (3) which face the first lands. Plural solder balls (30G2) are disposed for connecting the first lands and the second lands. The high-frequency circuits are housed in pseudo shielding cavities surrounded by the solder balls (30G2), the grounding conductors of the high-frequency circuits, and the first and second grounding conductors.
摘要:
Shielding of high-frequency circuits is achieved using a simple and inexpensive configuration not using any lid. A high-frequency circuit mounting substrate (20) is disposed, on an underside surface layer of which are disposed high-frequency circuits (21 and 22) and is formed a first grounding conductor that has same electric potential as grounding conductors of the high-frequency circuits and that surrounds the high-frequency circuits. A mother control substrate (3) is disposed, on which the high-frequency circuit mounting substrate (20) is mounted in such a way that the high-frequency circuits are sandwiched therebetween and on which a second grounding conductor is formed in a region facing the high-frequency circuits. Plural first lands are formed on the first grounding conductor of the high-frequency circuit mounting substrate (20) to surround the high-frequency circuits. Plural second lands are formed that are electrically connected to the second grounding conductor at positions on a surface layer of the mother control substrate (3) which face the first lands. Plural solder balls (30G2) are disposed for connecting the first lands and the second lands. The high-frequency circuits are housed in pseudo shielding cavities surrounded by the solder balls (30G2), the grounding conductors of the high-frequency circuits, and the first and second grounding conductors.
摘要:
A rectangular conductor pattern is formed around a first waveguide on a multilayer dielectric substrate facing a metal substrate, with an end at about λ/4 away from a long side edge of the first waveguide, where λ is a free-space wavelength of a signal wave. A conductor opening is formed between the end of the conduction pattern and the long side edge of the first waveguide, with a length longer than a long side of the first waveguide and shorter than about λ. A closed-ended dielectric transmission path is formed in the multilayer dielectric substrate in the layer direction, with a length of about λg/4, where λg is an in-substrate effective wavelength of the signal wave.
摘要:
Shielding of high-frequency circuits is achieved using a simple and inexpensive configuration not using any lid. A high-frequency circuit mounting substrate (20) is disposed, on an underside surface layer of which are disposed high-frequency circuits (21 and 22) and is formed a first grounding conductor that has same electric potential as grounding conductors of the high-frequency circuits and that surrounds the high-frequency circuits. A mother control substrate (3) is disposed, on which the high-frequency circuit mounting substrate (20) is mounted in such a way that the high-frequency circuits are sandwiched therebetween and on which a second grounding conductor is formed in a region facing the high-frequency circuits. Plural first lands are formed on the first grounding conductor of the high-frequency circuit mounting substrate (20) to surround the high-frequency circuits. Plural second lands are formed that are electrically connected to the second grounding conductor at positions on a surface layer of the mother control substrate (3) which face the first lands. Plural solder balls (30G2) are disposed for connecting the first lands and the second lands. The high-frequency circuits are housed in pseudo shielding cavities surrounded by the solder balls (30G2), the grounding conductors of the high-frequency circuits, and the first and second grounding conductors.
摘要:
A video reproduction apparatus detects the remaining time of a movie being reproduced and a battery's availability and calculates therefrom power available before reproducing the movie ends, and uses the power as calculated and a table representing a relationship between the liquid crystal display device's screen brightness and power consumption to calculate and set the liquid crystal display device's screen brightness to prevent the battery from running out while the movie is being reproduced.
摘要:
A two-terminal semiconductor device is formed on a semiconductor substrate. Two wiring patterns are respectively connected to terminals of the semiconductor device, and two electrode pads are respectively connected to the wiring patterns for connecting a signal input/output circuit formed on a separate substrate. Two parallel wiring patterns are respectively connected to the wiring patterns, and two reactance-circuit connection electrode pads are respectively connected to the parallel wiring patterns for electrically connecting a reactance circuit formed on the separate substrate separately from the signal input/output circuit.
摘要:
A multilayer dielectric substrate includes a first signal via, a second signal via, an internal-layer signal line, an internal-layer ground conductor, and ground vias. The first signal via is connected to a bias-and-control-signal terminal of a high-frequency semiconductor, and is arranged within a region corresponding to the electromagnetic shielding members. The second signal via is arranged outside the region, and is connected to an external terminal for a bias and control signal. The internal-layer signal line connects between the first and the second signal vias. The internal-layer ground conductor is arranged around the first and the second signal vias and the internal-layer signal line. The ground vias are arranged around the first and the second signal vias and the internal-layer signal line, on the internal-layer ground conductor. A resistance film is provided on at least one of an upper surface and a lower surface of the internal-layer signal line.