摘要:
A member useful in a printed wiring board comprises a resin insulating layer, a metallic fine particle or catalyst layer, a metal oxide layer, and a metallic or electroless plating layer, wherein the resin insulating layer contains a resin containing an aromatic amide site such as an epoxy-terminated aromatic polyamide.
摘要:
Provided is a wiring board and production method thereof, wherein production of wiring by a full additive method is achieved. This is extremely useful in forming fine copper wiring featuring a high adhesion on an insulating resin substrate. A resin having an excellent alkali resistance is used as the insulating resin substrate, and the copper wiring is formed on the insulating resin substrate through a degenerated layer containing amide group and a metallic oxide layer of a metal having a reduction potential more base than that of copper. The degenerated layer can be provided by, e.g., introduction of amide group into the surface of the insulating resin substrate. The copper can be formed by processes including electroless plating. The insulating resin substrate has superb heat resistance and dimensional stability, and the formed structure can provide a highly packed wiring board.
摘要:
Provided is a wiring board and production method thereof, wherein production of wiring by a full additive method is achieved. This is extremely useful in forming fine copper wiring featuring a high adhesion on an insulating resin substrate. A resin having an excellent alkali resistance is used as the insulating resin substrate, and the copper wiring is formed on the insulating resin substrate through a degenerated layer containing amide group and a metallic oxide layer of a metal having a reduction potential more base than that of copper. The degenerated layer can be provided by, e.g., introduction of amide group into the surface of the insulating resin substrate. The copper can be formed by processes including electroless plating. The insulating resin substrate has superb heat resistance and dimensional stability, and the formed structure can provide a highly packed wiring board.
摘要:
[Problem to be Solved] An object of the present invention is to provide a method of forming a conductive pattern having an excellent uniformity of film thickness within the surface of a substrate independently of the density of the pattern. [Solution] The production method of a conductive pattern in accordance with the present invention comprises the step of electroplating for forming a conductive pattern by electroplating on a metal seed layer formed on an insulated substrate using a plating bath containing an accelerator for reducing the deposition overpotential of a plated metal.
摘要:
To use a catalyst material, which has a functional group that covalently binds to a catalyst metal particle on the surface of a catalyst carrier, and a catalyst metal particle that covalently binds to the functional group, for a fuel cell.
摘要:
It is an object of the present invention to provide a wiring board having high-density wiring with a controlled shape without masking by a resist film and a production method thereof. In the present invention, the production method of a wiring board having copper wiring on an insulating substrate includes the steps of forming a metal seed layer on the insulating substrate, the metal seed layer having a roughened shape in a portion on which the copper wiring or a bump is to be formed, and forming an electroplated film of copper or an alloy of copper through electroplating on the portion of the metal seed layer having the roughened shape. A substance for suppressing the plating reaction is added to a plating bath to provide an angle of 90 degrees or smaller between a surface of the insulating substrate and a side of the electroplated film.
摘要:
To use a catalyst material, which has a functional group that covalently binds to a catalyst metal particle on the surface of a catalyst carrier, and a catalyst metal particle that covalently binds to the functional group, for a fuel cell.
摘要:
To use a catalyst material, which has a functional group that covalently binds to a catalyst metal particle on the surface of a catalyst carrier, and a catalyst metal particle that covalently binds to the functional group, for a fuel cell.
摘要:
A fine metal structure having its surface furnished with microprojections of high strength, high precision and large aspect ratio; and a process for producing the fine metal structure free of defects. There is provided a fine metal structure having its surface furnished with microprojections, characterized in that the microprojections have a minimum thickness or minimum diameter ranging from 10 nanometers to 10 micrometers and that the ratio between minimum thickness or minimum diameter (D) of microprojections and height of microprojections (H), H/D, is greater than 1. There is further provided a process for producing a fine metal structure, characterized by comprising providing a substrate having a fine rugged pattern on its surface, applying a molecular electroless plating catalyst to the surface, thereafter carrying out electroless plating to thereby form a metal layer having the rugged pattern filled, and detaching the metal layer from the substrate to thereby obtain a fine metal structure furnished with a surface having undergone reversal transfer of the above rugged pattern.
摘要:
It is an object of the present invention to provide a wiring board having high-density wiring with a controlled shape without masking by a resist film and a production method thereof. In the present invention, the production method of a wiring board having copper wiring on an insulating substrate includes the steps of forming a metal seed layer on the insulating substrate, the metal seed layer having a roughened shape in a portion on which the copper wiring or a bump is to be formed, and forming an electroplated film of copper or an alloy of copper through electroplating on the portion of the metal seed layer having the roughened shape. A substance for suppressing the plating reaction is added to a plating bath to provide an angle of 90 degrees or smaller between a surface of the insulating substrate and a side of the electroplated film.