摘要:
A member useful in a printed wiring board comprises a resin insulating layer, a metallic fine particle or catalyst layer, a metal oxide layer, and a metallic or electroless plating layer, wherein the resin insulating layer contains a resin containing an aromatic amide site such as an epoxy-terminated aromatic polyamide.
摘要:
The present invention provides a method for producing a metal structure comprising a substrate and a metal film formed on the substrate; comprising the steps of providing surface having irregularities made of a electrical conductor in the area of the substrate where the metal body or film is to be formed; and preferentially forming the metal body or film by electroplating in the area provided with the conductive surface having irregularities. The plating bath may preferably contain an additive compound such as a cyanine dye which is capable of suppressing the plating reaction, and which loses such plating-suppressing effect with the progress of the plating reaction. The metal film can be produced by electroplating in the area provided with the surface having irregularities.
摘要:
A fine metal structure having its surface furnished with microprojections of high strength, high precision and large aspect ratio; and a process for producing the fine metal structure free of defects. There is provided a fine metal structure having its surface furnished with microprojections, characterized in that the microprojections have a minimum thickness or minimum diameter ranging from 10 nanometers to 10 micrometers and that the ratio between minimum thickness or minimum diameter (D) of microprojections and height of microprojections (H), H/D, is greater than 1. There is further provided a process for producing a fine metal structure, characterized by comprising providing a substrate having a fine rugged pattern on its surface, applying a molecular electroless plating catalyst to the surface, thereafter carrying out electroless plating to thereby form a metal layer having the rugged pattern filled, and detaching the metal layer from the substrate to thereby obtain a fine metal structure furnished with a surface having undergone reversal transfer of the above rugged pattern.
摘要:
In an electrode in electrochemical device, particularly an anode lithium ion secondary battery, a cathode for use in alkali storage battery, an electrode for use in fuel cell, or a capacitor electrode, a metal structure has nano size micro-pillars is constructed with an electrode active material being formed on the surface of the metal structure. The metal structure having nano size micro-pillars can be formed, for example, by forming a metal layer as an electrode material by plating to the surface of a substrate having pores and then removing the substrate by dissolution, the metal filled in the pores of the substrate to form a group of micro-pillars. And the active material can be formed by depositing metal by plating. Since the active material is in direct contact with the conductive skeleton, the conducting agent for connecting the active materials to each other may not be added at all.
摘要:
[Problem to be Solved] An object of the present invention is to provide a method of forming a conductive pattern having an excellent uniformity of film thickness within the surface of a substrate independently of the density of the pattern. [Solution] The production method of a conductive pattern in accordance with the present invention comprises the step of electroplating for forming a conductive pattern by electroplating on a metal seed layer formed on an insulated substrate using a plating bath containing an accelerator for reducing the deposition overpotential of a plated metal.
摘要:
To use a catalyst material, which has a functional group that covalently binds to a catalyst metal particle on the surface of a catalyst carrier, and a catalyst metal particle that covalently binds to the functional group, for a fuel cell.
摘要:
It is an object of the present invention to provide a wiring board having high-density wiring with a controlled shape without masking by a resist film and a production method thereof. In the present invention, the production method of a wiring board having copper wiring on an insulating substrate includes the steps of forming a metal seed layer on the insulating substrate, the metal seed layer having a roughened shape in a portion on which the copper wiring or a bump is to be formed, and forming an electroplated film of copper or an alloy of copper through electroplating on the portion of the metal seed layer having the roughened shape. A substance for suppressing the plating reaction is added to a plating bath to provide an angle of 90 degrees or smaller between a surface of the insulating substrate and a side of the electroplated film.
摘要:
To use a catalyst material, which has a functional group that covalently binds to a catalyst metal particle on the surface of a catalyst carrier, and a catalyst metal particle that covalently binds to the functional group, for a fuel cell.
摘要:
To use a catalyst material, which has a functional group that covalently binds to a catalyst metal particle on the surface of a catalyst carrier, and a catalyst metal particle that covalently binds to the functional group, for a fuel cell.
摘要:
Provided are an electrode, an electrolysis cell, and an electrochemical analyzer that improve the long-term stability of analysis data. A working electrode, a counter electrode, and reference electrode are disposed in an electrolysis cell. The working electrode is obtained by forming a lead wire in a composite material having platinum or a platinum alloy as a base material, in which a metal oxide is dispersed, or in a laminated material obtained by laminating a valve metal and platinum such that the cross sectional crystal texture in the thickness direction of the platinum is formed in layers and the thickness of each layer of the platinum is 5 micrometers or less. The metal oxide is selected from among zirconium oxide, tantalum oxide, and niobium oxide, and the metal oxide content of the platinum or the platinum alloy is 0.005 to 1 wt % in terms of the zirconium, tantalum, or niobium metal.