摘要:
A gate electrode serving as a Schottky electrode includes a TaNx layer and an Au layer. The TaNx layer serves as a barrier metal for preventing atoms from diffusing from the Au layer into a substrate. TaNx does not contain Si, and therefore has a higher humidity resistance than WSiN containing Si. Accordingly, the gate electrode has a higher humidity resistance than a conventional gate electrode including a WSiN layer. Setting a nitrogen content at less than 0.8 can prevent significant degradation in Schottky characteristics as compared to the conventional gate electrode. Setting the nitrogen content at 0.5 or less, Schottky characteristics can be improved more than in the conventional gate electrode.
摘要:
A semiconductor device includes: a semiconductor substrate; an impurity-doped region at a top surface of the semiconductor substrate; an insulating region located around the impurity-doped region on the top surface of the semiconductor substrate; a gate electrode on the impurity-doped region; a first electrode and a second electrode located on the impurity-doped region, sandwiching the gate electrode; a first pad located on the insulating region and connected to the gate electrode; a second pad facing the first pad across the impurity-doped region, on the insulating region, and connected to the second electrode; and a conductor located between the first electrode and the second pad on the insulating region.
摘要:
A semiconductor device includes a substrate having a recess, a gate electrode in the recess in the substrate, and a source electrode and a drain electrode disposed on opposite sides of the gate electrode. An insulating film is on at least on a surface of the gate electrode and a portion in the recess, other than where the gate electrode is located, and a shield electrode connected to the source electrode is located on a portion of the insulating film between the gate electrode and the drain electrode.
摘要:
A semiconductor device includes: a semiconductor substrate; an impurity-doped region at a top surface of the semiconductor substrate; an insulating region located around the impurity-doped region on the top surface of the semiconductor substrate; a gate electrode on the impurity-doped region; a first electrode and a second electrode located on the impurity-doped region, sandwiching the gate electrode; a first pad located on the insulating region and connected to the gate electrode; a second pad facing the first pad across the impurity-doped region, on the insulating region, and connected to the second electrode; and a conductor located between the first electrode and the second pad on the insulating region.
摘要:
A field-effect transistor includes a channel layer formed of a III-V compound semiconductor excluding aluminum; a gate contact layer formed of a III-V compound semiconductor and provided on the channel layer, the III-V compound semiconductor having a dopant concentration equal to or less than 1×1016 cm−3, containing aluminum, and having a large band gap energy; a gate buried layer of a III-V compound semiconductor and provided on the gate contact layer; and a gate electrode buried in the gate buried layer and in contact with the gate contact layer. A recess in the gate buried layer is opposed to an upper side wall of the gate electrode with a gap therebetween and a part of the gate buried layer, and where a contact with a lower side wall of the gate electrode is established, part of the gate buried layer remains without being removed.
摘要翻译:场效应晶体管包括由不包括铝的III-V族化合物半导体形成的沟道层; 由III-V族化合物半导体形成的栅极接触层,其设置在所述沟道层上,所述III-V族化合物半导体的掺杂剂浓度为1×10 16 cm -3以下,含有铝,并且具有大的带隙能量; 设置在栅极接触层上的III-V族化合物半导体的栅极掩埋层; 以及掩埋在栅极掩埋层中并与栅极接触层接触的栅电极。 栅极掩埋层中的凹部与栅电极的上侧壁相对,其间具有间隙,并且栅极掩埋层的一部分与栅电极的下侧壁的接触被建立, 栅极掩埋层保持不被去除。
摘要:
The present method includes steps of: discharging a droplet of fluid containing fine particles with electric characteristics from an inkjet nozzle onto the microwave integrated circuit formed on a substrate; forming a coat of the fine particles having electric characteristics on the substrate; measuring electric characteristics of the microwave integrated circuit using a probe of a circuit evaluation apparatus before and after forming the coat; and adjusting the electric characteristics of the microwave integrated circuit, so that forming the coat at a desired location on the upper surface of the circuit substrate by scanning an aim of the inkjet nozzle against the circuit substrate enables the microwave integrated circuit to meet the specification.
摘要:
A semiconductor device includes a substrate having a recess, a gate electrode in the recess in the substrate, and a source electrode and a drain electrode disposed on opposite sides of the gate electrode. An insulating film is on at least on a surface of the gate electrode and a portion in the recess, other than where the gate electrode is located, and a shield electrode connected to the source electrode is located on a portion of the insulating film between the gate electrode and the drain electrode.
摘要:
A semiconductor device operating at a frequency between 0.8 GHz and 300 GHz includes an active region that is positioned on a semi-insulating GaAs substrate; a gate electrode that is positioned in the active region; and a source electrode and a drain electrode that are positioned on the surface of the active region facing each other with the gate electrode positioned between the source electrode and the drain electrode. A drain side active region, which is a part of the active region and positioned between the gate electrode and the drain electrode, increases in width in the direction to the drain electrode from the gate electrode.
摘要:
The present method includes steps of: discharging a droplet of fluid containing fine particles with electric characteristics from an inkjet nozzle onto the microwave integrated circuit formed on a substrate; forming a coat of the fine particles having electric characteristics on the substrate; measuring electric characteristics of the microwave integrated circuit using a probe of a circuit evaluation apparatus before and after forming the coat; and adjusting the electric characteristics of the microwave integrated circuit, so that forming the coat at a desired location on the upper surface of the circuit substrate by scanning an aim of the inkjet nozzle against the circuit substrate enables the microwave integrated circuit to meet the specification.
摘要:
A semiconductor circuit substrate includes a transistor-forming substrate and a circuit-forming substrate. The transistor-forming substrate is a GaN substrate and has a Bipolar Junction Transistor (BJT) located in its top surface. The bottom surface of the transistor-forming substrate is flat and has contact regions. The circuit-forming substrate is a material other than a compound semiconductor and has no semiconductor active elements. The circuit-forming substrate has a flat top surface, contact regions buried in and exposed at the top surface, and passive circuits. The transistor-forming substrate and the circuit-forming substrate are directly bonded together without any intervening film, such as an insulating film.