Abstract:
The present disclosure involves an apparatus. The apparatus includes a substrate having a front side a back side opposite the front side. The substrate includes a plurality of openings formed from the back side of the substrate. The openings collectively define a pattern on the back side of the substrate from a planar view. In some embodiments, the substrate is a silicon substrate or a silicon carbide substrate. Portions of the silicon substrate vertically aligned with the openings have vertical dimensions that vary from about 100 microns to about 300 microns. A III-V group compound layer is formed over the front side of the silicon substrate. The III-V group compound layer is a component of one of: a light-emitting diode (LED), a laser diode (LD), and a high-electron mobility transistor (HEMT).
Abstract:
A system for localizing an acoustic source is provided. This system includes a microphone apparatus, an audio processing apparatus, a photographing apparatus, and a decision apparatus. The microphone apparatus receives an acoustic signal and generates at least one received audio signal. The audio processing apparatus generates first location information based on the at least one received audio signal. The decision apparatus generates depth information based on at least one image captured by the photographing apparatus. According to the first location information, the at least one captured image, and the depth information, the decision apparatus determines a location corresponding to the source of the acoustic signal.
Abstract:
A system having a light guide adapted to collect light from a light source, a light detector attached to the light guide, a controller electrically connected to an output of the light detector, and a driver for driving the light source detachably connected to an output of the controller. The driver includes a memory that stores a calibration value for the light source.
Abstract:
The present disclosure provides a semiconductor test system. The semiconductor test system includes a wafer stage to hold a wafer having a plurality of light emitting devices (LEDs); a probe test card operable to test each test field of the wafer; and a light detector integrated with the probe test card to collect light from a LED of the wafer.
Abstract:
The present invention discloses a circuit with three-stage of power-on sequence used for suppressing the pop noise in audio system. It mainly comprises a first resistor (R1); a capacitor (Cout); a first switch (SW1); a second switch (SW2); a soft start device; a first feedback amplifier; and a second feedback amplifier. By using the three-stage of power-on sequence, the present invention can effectively suppress the pop noise when the audio driver is power on.
Abstract:
A device includes a textured substrate having a trench extending from a top surface of the textured substrate into the textured substrate, wherein the trench comprises a sidewall and a bottom. A light-emitting device (LED) includes an active layer over the textured substrate. The active layer has a first portion parallel to the sidewall of the trench and a second portion parallel to the bottom of the trench.
Abstract:
Multiple through-substrate vias (TSVs) are used to make electrical connections for an LED formed over a substrate. A first TSV extends through the substrate from a back surface of the substrate to the front surface of the substrate and includes a first TSV conductor that electrically connects to a first cladding layer of the LED. A second TSV extends through the substrate and an active layer of the LED from the back surface of the substrate to a second cladding layer or an ITO layer. The second TSV includes an isolation layer that electrically isolates a second TSV conductor from the first cladding layer and the active layer. Additionally dummy TSVs may be formed to conduct heat away from the LED optionally through a package substrate.
Abstract:
A new method of planarizing an integrated circuit is described. A first coating of a silicate spin-on-glass material is applied to the surface of a patterned conductor layer to be planarized. The spin-on-glass material is applied under low relative humidity, filling the valleys of the irregular structure of the conductor layer. The first spin-on-glass layer is covered with a second coating of the spin-on-glass material also applied under low relative humidity. Then, both first and second spin-on-glass layers are cured. This method provides a uniform spin-on-glass dielectric layer upon which a second conductor layer may now be successfully applied.
Abstract:
An audio amplifier apparatus for driving a loudspeaker is provided. The audio amplifier apparatus includes a soft charge unit, a first amplification module, and a second amplification module. The soft charge unit is coupled to the loudspeaker through an output terminal and supplies a driving current according to a first control signal to soft charge the loudspeaker, so as to gradually increase a voltage level on the output terminal. The first amplification module receives an audio signal according to the first control signal and amplifies the audio signal to output a first amplified signal for driving the loudspeaker. The second amplification module receives the audio signal according to a second control signal and amplifies the audio signal to output a second amplified signal for driving the loudspeaker. The soft charge unit generates the second control signal by comparing the voltage level on the output terminal with a predetermined voltage level.
Abstract:
An optical element is assembled to a light emitting diode (LED) to form an illuminative light source. The optical element includes a transparent main body having a light guiding pillar and an extending part. The light guiding pillar has a top surface and a bottom surface having a recess. The extending part is extended from the circumference of the top surface and an end of the extending part has at least a light-emitting surface. Wherein the LED is disposed on the recess and emits light to the optical element. The extending part guides the light and enlarges the light-emitting angle.