摘要:
A method is used to determine focus of a lithographic apparatus used in a lithographic process on a substrate. The lithographic process is used to form at least two periodic structures on the substrate. Each structure has at least one feature that has an asymmetry between opposing side wall angles that varies as a different function of the focus of the lithographic apparatus on the substrate. A spectrum produced by directing a beam of radiation onto the at least two periodic structures is measured and ratios of the asymmetries are determined. The ratios and a relationship between the focus and the side wall asymmetry for each structure is used to determine the focus of the lithographic apparatus on the substrate.
摘要:
In order to determine whether an exposure apparatus is outputting the correct dose of radiation and a projection system of the exposure apparatus is focusing the radiation correctly, a test pattern is used on a mask for printing a specific marker onto a substrate. This marker may be measured by an inspection apparatus, such as, for example, a scatterometer to determine whether errors in focus, dose, and other related properties are present. The test pattern is arranged such that changes in focus and dose may be easily determined by measuring properties of a pattern that is exposed using the mask. The test pattern of the mask is arranged so that it gives rise to a marker pattern on the substrate surface. The marker pattern contains structures that have at least two measurable side wall angles. Asymmetry between side wall angles of a structure is related to focus (or defocus) of the exposure radiation from the exposure apparatus. The extent of defocus may thereby be determined by measuring an asymmetry in side wall angle of the printed marker pattern structures.
摘要:
A method is used to determine focus of a lithographic apparatus used in a lithographic process on a substrate. The lithographic process is used to form at least two periodic structures on the substrate. Each structure has at least one feature that has an asymmetry between opposing side wall angles that varies as a different function of the focus of the lithographic apparatus on the substrate. A spectrum produced by directing a beam of radiation onto the at least two periodic structures is measured and ratios of the asymmetries are determined. The ratios and a relationship between the focus and the side wall asymmetry for each structure is used to determine the focus of the lithographic apparatus on the substrate.
摘要:
In order to determine whether an exposure apparatus is outputting the correct dose of radiation and a projection system of the exposure apparatus is focusing the radiation correctly, a test pattern is used on a mask for printing a specific marker onto a substrate. This marker may be measured by an inspection apparatus, such as, for example, a scatterometer to determine whether errors in focus, dose, and other related properties are present. The test pattern is arranged such that changes in focus and dose may be easily determined by measuring properties of a pattern that is exposed using the mask. The test pattern of the mask is arranged so that it gives rise to a marker pattern on the substrate surface. The marker pattern contains structures that have at least two measurable side wall angles. Asymmetry between side wall angles of a structure is related to focus (or defocus) of the exposure radiation from the exposure apparatus. The extent of defocus may thereby be determined by measuring an asymmetry in side wall angle of the printed marker pattern structures.
摘要:
In a method of determining the focus of a lithographic apparatus used in a lithographic process on a substrate, the lithographic process is used to form a structure on the substrate, the structure having at least one feature which has an asymmetry in the printed profile which varies as a function of the focus of the lithographic apparatus on the substrate. A first image of the periodic structure is formed and detected while illuminating the structure with a first beam of radiation. The first image is formed using a first part of non-zero order diffracted radiation. A second image of the periodic structure is formed and detected while illuminating the structure with a second beam of radiation. The second image is formed using a second part of the non-zero order diffracted radiation which is symmetrically opposite to the first part in a diffraction spectrum. The ratio of the intensities of the measured first and second portions of the spectra is determined and used to determine the asymmetry in the profile of the periodic structure and/or to provide an indication of the focus on the substrate. In the same instrument, an intensity variation across the detected portion is determined as a measure of process-induced variation across the structure. A region of the structure with unwanted process variation can be identified and excluded from a measurement of the structure.
摘要:
A set of parameters used in a model of a spectrometer includes free parameters and fixed parameters. A first set of values for the parameters is set and the model is used to generate a first spectrum. A value of one of the fixed parameters is changed and a second spectrum is generated. An inverse of the model of the spectrometer is then applied to the second spectrum to generate a set of values for the parameters, the values being the same as the first set of values except for one or more of the free parameters. If the free parameter has significantly changed the fixed parameter is designated a free parameter.
摘要:
Disclosed are methods, apparatuses, and lithographic systems for calibrating an inspection apparatus. Radiation is projected onto a pattern in a target position of a substrate. By making a plurality of measurements of the pattern and comparing the measured first or higher diffraction orders of radiation reflected from the pattern of different measurements, a residual error indicative of the error in a scatterometer may be calculated. This error is an error in measurements of substrate parameters caused by irregularities of the scatterometer. The residual error may manifest itself as an asymmetry in the diffraction spectra.
摘要:
Disclosed are methods, apparatuses, and lithographic systems for calibrating an inspection apparatus. Radiation is projected onto a pattern in a target position of a substrate. By making a plurality of measurements of the pattern and comparing the measured first or higher diffraction orders of radiation reflected from the pattern of different measurements, a residual error indicative of the error in a scatterometer may be calculated. This error is an error in measurements of substrate parameters caused by irregularities of the scatterometer. The residual error may manifest itself as an asymmetry in the diffraction spectra.
摘要:
In order to determine whether an exposure apparatus is outputting the correct dose of radiation and its projection system is focusing the radiation correctly, a test pattern is used on a mask for printing a specific marker onto a substrate. This marker is then measured by an inspection apparatus, such as a scatterometer, to determine whether there are errors in focus and dose and other related properties. The test pattern is configured such that changes in focus and dose may be easily determined by measuring the properties of a pattern that is exposed using the mask. The test pattern may be a 2D pattern where physical or geometric properties, e.g., pitch, are different in each of the two dimensions. The test pattern may also be a one-dimensional pattern made up of an array of structures in one dimension, the structures being made up of at least one substructure, the substructures reacting differently to focus and dose and giving rise to an exposed pattern from which focus and dose may be determined.
摘要:
Scatterometry method and apparatus are useful in a lithographic apparatus and device manufacturing. A back focal plane diffraction intensity image of a measurement projection system configured to project a radiation beam onto a target portion of a substrate is measured. A beam of radiation having a first wavelength is directed to the substrate. A diffraction image of a zeroth diffraction order and higher order diffraction from a diffraction structure in the substrate is provided. A first layer (4) of the diffractionstructure provides a diffraction image having only a zeroth diffraction order. A second layer (5) has a periodic structure (6a, 6b) configured such that a lowest spatial frequency of the periodic structure is lower than spatial frequencies of interest of the first structure. From the diffraction image originating from diffraction of the radiation beam in both the first and second layer a critical dimension metrology parameter is determined.