摘要:
Provided are a wafer with the characteristics of abrupt metal-insulator transition (MIT), and a heat treatment apparatus and method that make it possible to mass-produce a large-diameter wafer without directly attaching the wafer to a heater or a substrate holder. The heat treatment apparatus includes a heater applying heat to a wafer having the characteristics of abrupt MIT and one surface covered with a thermally opaque film, and a plurality of fixing units formed along an edge portion of a top surface of the heater to fix the wafer to the heater.
摘要:
Provided are a temperature sensor using a metal-insulator transition (MIT) device subject to abrupt MIT at a specific temperature and an alarm including the temperature sensor. The abrupt MIT device includes an abrupt MIT thin film and at least two electrode thin films that contacts the abrupt MIT thin film. The abrupt MIT device generates abrupt metal-insulator transition at a specific transition temperature. The alarm includes a temperature sensor comprising an abrupt MIT device, and an alarm signaling device serially connected to the temperature sensor. Accordingly, the alarm can be manufactured to have a simple circuit and be of a small size by including the temperature sensor using an abrupt MIT device.
摘要:
Provided are an abrupt metal-insulator transition (MIT) device for bypassing super-high voltage noise to protect an electric and/or electronic system, such as, a high-voltage switch, from a super-high voltage, a high-voltage noise removing circuit for bypassing the super-high voltage noise using the abrupt MIT device, and an electric and/or electronic system including the high-voltage noise removing circuit. The abrupt MIT device includes a substrate, a first abrupt MIT structure, and a second abrupt MIT structure. The first and second abrupt MIT structures are formed on an upper surface and a lower surface, respectively, of the substrate. The high-voltage noise removing circuit includes an abrupt MIT device chain connected in parallel to the electric and/or electronic system to be protected. The abrupt MIT device chain includes at least two abrupt MIT devices serially connected to each other.
摘要:
Provided is a method of manufacturing a large-sized vanadium oxide thin film having a uniform surface, uniform film thickness and stable composition. According to the method, a vanadium-organometallic compound gas is injected into a chamber to form adsorption layer where molecules of the vanadium-organometallic compound are adsorbed on the surface of a substrate. After that, an oxygen precursor is injected into the chamber and thus allowed to accomplish surface-saturation reaction with the adsorbed materials to fabricate a vanadium oxide thin film.
摘要:
Provided is a 2-terminal semiconductor device that uses an abrupt MIT semiconductor material layer. The 2-terminal semiconductor device includes a first electrode layer, an abrupt MIT semiconductor organic or inorganic material layer having an energy gap less than 2eV and holes in a hole level disposed on the first electrode layer, and a second electrode layer disposed on the abrupt MIT semiconductor organic or inorganic material layer. An abrupt MIT is generated in the abrupt MIT semiconductor material layer by a field applied between the first electrode layer and the second electrode layer.
摘要:
A current-jump-control circuit including an abrupt metal-insulator phase transition device is proposed, and includes a source, the abrupt metal-insulator phase transition device and a resistive element. The abrupt metal-insulator phase transition device includes first and second electrodes connected to the source, and shows an abrupt metal-insulator phase transition characteristic of a current jump when an electric field is applied between the first electrode and the second electrode. The resistive element is connected between the source and the abrupt metal-insulator phase transition device to control a jump current flowing through the abrupt metal-insulator phase transition device. According to the above current control circuit, the abrupt metal-insulator phase transition device can be prevented from being failed due to a large amount of current and thus the current-jump-control circuit can be applied in various application fields.
摘要:
An electron emission device having a high electron emitting rate and a display including the device are prodivided. The electron emission device using abrupt metal-insulator transition, the device including: a board; a metal-insulator transition (MIT) material layer disposed on the board and divided by a predetermined gap with portions of the divided MIT material layer facing one another; and electrodes connected to each of the portions of the divided metal-insulator transition material layer for emitting electrons to the gap between the portions of the divided metal-insulator transition material layer.
摘要:
Provided is a metal-insulator-transition switching transistor with a gate electrode on a silicon substrate (back-gate structure) and a metal-insulator-transition channel layer of VO2 that changes from an insulator phase to a metal phase, or vice versa, depending on a variation of an electric field, and a method for manufacturing the same, whereby it is possible to fabricate a metal-insulator-transition switching transistor having high current gain characteristics and being stable thermally.
摘要:
Provided is a field effect transistor. The field effect transistor includes an insulating vanadium dioxide (VO2) thin film used as a channel material, a source electrode and a drain electrode disposed on the insulating VO2 thin film to be spaced apart from each other by a channel length, a dielectric layer disposed on the source electrode, the drain electrode, and the insulating VO2 thin film, and a gate electrode for applying a predetermined voltage to the dielectric layer.
摘要翻译:提供了场效应晶体管。 场效应晶体管包括用作沟道材料的绝缘二氧化钒(VO 2 N 2)薄膜,设置在绝缘VO 2薄膜上的源电极和漏电极 通过沟道长度彼此间隔开,设置在源电极,漏电极和绝缘VO 2薄膜上的电介质层和用于施加预定电压的栅电极 电介质层。
摘要:
Provided is a 2-terminal semiconductor device that uses an abrupt MIT semiconductor material layer. The 2-terminal semiconductor device includes a first electrode layer, an abrupt MIT semiconductor organic or inorganic material layer having an energy gap less than 2 eV and holes in a hole level disposed on the first electrode layer, and a second electrode layer disposed on the abrupt MIT semiconductor organic or inorganic material layer. An abrupt MIT is generated in the abrupt MIT semiconductor material layer by a field applied between the first electrode layer and the second electrode layer.