摘要:
A system and method for imaging biological samples on multiple surfaces of a support structure are disclosed. The support structure may be a flow cell through which a reagent fluid is allowed to flow and interact with the biological samples. Excitation radiation from at least one radiation source may be used to excite the biological samples on multiple surfaces. In this manner, fluorescent emission radiation may be generated from the biological samples and subsequently captured and detected by detection optics and at least one detector. The detected fluorescent emission radiation may then be used to generate image data. This imaging of multiple surfaces may be accomplished either sequentially or simultaneously. In addition, the techniques of the present invention may be used with any type of imaging system. For instance, both epifluorescent and total internal reflection methods may benefit from the techniques of the present invention.
摘要:
Provided herein are compositions and methods for sequencing using at least altering electrical characteristics of polymer bridges. In some examples, the bridges may span the space between first and second electrodes and may include first and second polymer chains that are hybridized to one another. A plurality of nucleotides may be coupled to corresponding labels. A polymerase may be coupled to the bridge and may add nucleotides to a first polynucleotide using at least a sequence of a second polynucleotide. The labels corresponding to those nucleotides respectively may alter hybridization between the first and second polymer chains. Detection circuitry may detect a sequence in which the polymerase adds the nucleotides to the first polynucleotide using at least changes in an electrical signal through the bridge, the changes being responsive to the respective alterations of hybridization using the labels corresponding to those nucleotides.
摘要:
Embodiments provided herewith are directed to self-assembled methods of preparing a patterned surface for sequencing applications including, for example, a patterned flow cell or a patterned surface for digital fluidic devices. The methods utilize photolithography to create a patterned surface with a plurality of microscale or nanoscale contours, separated by hydrophobic interstitial regions, without the need of oxygen plasma treatment during the photolithography process. In addition, the methods avoid the use of any chemical or mechanical polishing steps after the deposition of a gel material to the contours.
摘要:
An example of a flow cell includes a substrate; a first primer set attached to a first region on the substrate, the first primer set including an un-cleavable first primer and a cleavable second primer; and a second primer set attached to a second region on the substrate, the second primer set including a cleavable first primer and an un-cleavable second primer.
摘要:
A system and method for imaging biological samples on multiple surfaces of a support structure are disclosed. The support structure may be a flow cell through which a reagent fluid is allowed to flow and interact with the biological samples. Excitation radiation from at least one radiation source may be used to excite the biological samples on multiple surfaces. In this manner, fluorescent emission radiation may be generated from the biological samples and subsequently captured and detected by detection optics and at least one detector. The detected fluorescent emission radiation may then be used to generate image data. This imaging of multiple surfaces may be accomplished either sequentially or simultaneously. In addition, the techniques of the present invention may be used with any type of imaging system. For instance, both epifluorescent and total internal reflection methods may benefit from the techniques of the present invention.
摘要:
An example of a flow cell includes a substrate; a first primer set attached to a first region on the substrate, the first primer set including an un-cleavable first primer and a cleavable second primer; and a second primer set attached to a second region on the substrate, the second primer set including a cleavable first primer and an un-cleavable second primer.
摘要:
A method for sequencing includes steps of (a) providing first and second nucleic acid templates, wherein the two templates have different sequences; (b) extending a first primer bound to the first template using a first polymerase species and a first set of nucleotide analogs; (c) extending a second primer bound to the second template using a second polymerase species and a second set of nucleotide analogs, wherein the first polymerase species is different from the second polymerase species and wherein the first set of nucleotide analog is different from the second set of nucleotide analog, (d) detecting the first and second primer extension products; and (e) repeating steps (b) through (d), thereby determining the different sequences of the first and second templates.
摘要:
Provided herein is a droplet actuator including (a) first and second substrates separated by a droplet-operations gap, the first and second substrates including respective hydrophobic surfaces that face the droplet-operations gap; (b) a plurality of electrodes coupled to at least one of the first substrate and the second substrate, the electrodes arranged along the droplet-operations gap to control movement of a droplet along the hydrophobic surfaces within the droplet-operations gap; and (c) a hydrophilic or variegated-hydrophilic surface exposed to the droplet-operations gap, the hydrophilic or variegated-hydrophilic surface being positioned to contact the droplet when the droplet is at a select position within the droplet-operations gap.
摘要:
A labeled nucleotide includes a nucleotide, a linking molecule attached to a phosphate group of the nucleotide, and a redox-active charge tag attached to the linking molecule. The redox-active charge tag is to be oxidized or reduced by an electrically conductive channel when maintained in proximity of a sensing zone of the electrically conductive channel.
摘要:
An example of a kit includes a flow cell and a cleavage mix. An example flow cell includes a substrate; a catalytic polymeric hydrogel on the substrate, the catalytic polymeric hydrogel including a deblocking catalyst; and an amplification primer attached to the catalytic polymeric hydrogel. The deblocking catalyst accelerates cleavage of a blocking group of a 3′ OH blocked nucleotide introduced to the flow cell and incorporated into a template strand attached to the amplification primer. An example of the cleavage mix includes a component to initiate cleavage of the blocking group.