Abstract:
Conductive plug structures suitable for stacked semiconductor device package is provided, wherein large contact region between the conductive plug structures and the corresponding pads of devices can be achieved, to reduce electrical impedance. Therefore, package structures such as photosensitive device packages using the conductive plug structures have superior electrical performance and reliability.
Abstract:
A chip package including a heat-dissipating device, a first thermal interface material layer disposed on the heat-dissipating device, a patterned circuit layer disposed on the first thermal interface material layer, a chip disposed on the patterned circuit layer and electrically connected to the patterned circuit layer, and an insulating encapsulant covering the chip, the patterned circuit layer, and the first thermal interface material layer is provided. The first thermal interface material layer has a thickness between 100 μm and 300 μm. The first thermal interface material layer is located between the patterned circuit layer and the heat-dissipating device.
Abstract:
A miniaturized particulate matter detector that includes a filter and a concentration detector is provided. The filter has a plurality of holes, and the concentration detector is correspondingly disposed under the filter. The concentration detector has a detected area used to detect a concentration of at least one miniaturized particulate matter. A manufacturing method of the filter is also provided.
Abstract:
A solder and a solder joint structure formed by the solder are provided. The solder includes a zinc-based material, a copper film, and a noble metal film. The copper film completely covers the surface of the zinc-based material. The noble metal film completely covers the copper film. The solder joint structure includes a zinc-based material and an intermetallic layer. The intermetallic layer consists of zinc and noble metal and completely covers the surface of the zinc-based material.
Abstract:
A power module for high/low voltage insulation is provided. The power module includes a first substrate, a second substrate and an insulating substrate. The first substrate includes a first control circuit and a light source, wherein the first control circuit controls the light source to emit light. The second substrate includes a light-sensing part, a second control circuit and a power device. The light-sensing part receives the light of the light source of the first substrate to send a sensing information. The second control circuit correspondingly drives the power device in accordance with the sensing information. The insulating substrate is disposed between the first substrate and second substrate.
Abstract:
A chip package including a heat-dissipating device, a first thermal interface material layer disposed on the heat-dissipating device, a patterned circuit layer disposed on the first thermal interface material layer, a chip disposed on the patterned circuit layer and electrically connected to the patterned circuit layer, and an insulating encapsulant covering the chip, the patterned circuit layer, and the first thermal interface material layer is provided. The first thermal interface material layer has a thickness between 100 μm and 300 μm. The first thermal interface material layer is located between the patterned circuit layer and the heat-dissipating device.
Abstract:
A chip package including a lead frame, a first chip, a heat dissipation structure, and an insulating encapsulant is provided. The lead frame includes a chip pad having a first surface and a second surface opposite to the first surface and a lead connected to the chip pad. The first chip is disposed on the first surface of the chip pad and electrically connected to the lead of the lead frame and to the outside of the insulating encapsulant via the lead. The head dissipation structure is disposed on the second surface of the chip pad and includes a thermal interface material layer attached to the second surface. The insulating encapsulant encapsulates the first chip, the heat dissipation structure, and a portion of the lead frame.
Abstract:
A chip package including a lead frame, a first chip, a heat dissipation structure, and an insulating encapsulant is provided. The lead frame includes a chip pad having a first surface and a second surface opposite to the first surface and a lead connected to the chip pad. The first chip is disposed on the first surface of the chip pad and electrically connected to the lead of the lead frame and to the outside of the insulating encapsulant via the lead. The head dissipation structure is disposed on the second surface of the chip pad and includes a thermal interface material layer attached to the second surface. The insulating encapsulant encapsulates the first chip, the heat dissipation structure, and a portion of the lead frame.
Abstract:
A miniaturized particulate matter detector that includes a filter and a concentration detector is provided. The filter has a plurality of holes, and the concentration detector is correspondingly disposed under the filter. The concentration detector has a detected area used to detect a concentration of at least one miniaturized particulate matter. A manufacturing method of the filter is also provided.
Abstract:
A power module for high/low voltage insulation is provided. The power module includes a first substrate, a second substrate and an insulating substrate. The first substrate includes a first control circuit and a light source, wherein the first control circuit controls the light source to emit light. The second substrate includes a light-sensing part, a second control circuit and a power device. The light-sensing part receives the light of the light source of the first substrate to send a sensing information. The second control circuit correspondingly drives the power device in accordance with the sensing information. The insulating substrate is disposed between the first substrate and second substrate.