Abstract:
Techniques related to forming selective gate spacers for semiconductor devices and transistor structures and devices formed using such techniques are discussed. Such techniques include forming a blocking material on a semiconductor fin, disposing a gate having a different surface chemistry than the blocking material on a portion of the blocking material, forming a selective conformal layer on the gate but not on a portion of the blocking material, and removing exposed portions of the blocking material.
Abstract:
A method of an aspect includes forming a first thicker layer of a first material over a first region having a first surface material by separately forming each of a first plurality of thinner layers by selective chemical reaction. The method also includes limiting encroachment of each of the first plurality of thinner layers over a second region that is adjacent to the first region. A second thicker layer of a second material is formed over the second region having a second surface material that is different than the first surface material.
Abstract:
Bottom-up fill approaches for forming metal features of semiconductor structures, and the resulting structures, are described. In an example, a semiconductor structure includes a trench disposed in an inter-layer dielectric (ILD) layer. The trench has sidewalls, a bottom and a top. A U-shaped metal seed layer is disposed at the bottom of the trench and along the sidewalls of the trench but substantially below the top of the trench. A metal fill layer is disposed on the U-shaped metal seed layer and fills the trench to the top of the trench. The metal fill layer is in direct contact with dielectric material of the ILD layer along portions of the sidewalls of the trench above the U-shaped metal seed layer.
Abstract:
Precursor and process design for photo-assisted metal atomic layer deposition (ALD) and chemical vapor deposition (CVD) is described. In an example, a method of fabricating a thin metal film involves introducing precursor molecules proximate to a surface on or above a substrate, each of the precursor molecules having one or more metal centers surrounded by ligands. The method also involves depositing a metal layer on the surface by dissociating the ligands from the precursor molecules using a photo-assisted process.