Abstract:
A technology that is operable to select a radio node on a communications network is disclosed. In one embodiment, a user equipment (UE) is configured with circuitry configured to determine when to offload data traffic of the UE to a wireless local area network (WLAN) access point (AP) in a multi-radio access technology (RAT) communications network based on radio access network (RAN) assistance information communicated via the operations, administration and maintenance (OAM) system. A status is identified of one or more WLAN APs in the multi-RAT communications network using the RAN assistance information. A radio node is selected in the cell of the multi-RAT communications network for communication based on selected criteria.
Abstract:
Connection management techniques for wireless network mobility procedures are described. In one embodiment, for example, an evolved packet core (EPC) node may comprise a processor circuit to receive a notification of a mobility procedure for a user equipment (UE), determine whether to release a local gateway (L-GW)-provided packet data network (PDN) connection of the UE, and in response to a determination that the L-GW-provided PDN connection is to be released, send either a detach request message or a delete session request message to initiate a process for releasing the L-GW-provided PDN connection. Other embodiments are described and claimed.
Abstract:
A User Equipment is disclosed that is configured to perform traffic steering from a RAN (e.g., 3GPP system) to a WLAN, or vice versa, based on one or more rules. In an embodiment, the UE performs the traffic steering to the WLAN based on whether data is to be transmitted from or received by the UE. In another embodiment, the UE performs the traffic steering based on receipt of RAN assistance parameters without checking the status of the UE upload buffers or the eNB/AP download buffers. In yet another embodiment, the UE performs the traffic steering based on the latest RAN assistance information and a time elapsed since the last transmission or receipt of data.
Abstract:
Technology for a lawful interception of a proximity service (e.g., device-to-device (D2D) communication) provided to user equipments (UEs) is disclosed. In an example, a method can include an evolved Node B (eNB) transmitting a proximity service setup message to a first UE to setup D2D communication with a second UE. The eNB can transmit a lawful interception message to the first UE or the second UE to provide lawful interception of the D2D communication. The eNB can receive packets associated with the D2D communication from the first UE or the second UE. The eNB can communicate the received packets from the first UE and the second UE to the core network (CN) to be copied.
Abstract:
A User Equipment is disclosed that is configured to perform traffic steering from a RAN (e.g., 3GPP system) to a WLAN, or vice versa, based on one or more rules. In an embodiment, the UE performs the traffic steering to the WLAN based on whether data is to be transmitted from or received by the UE. In another embodiment, the UE performs the traffic steering based on receipt of RAN assistance parameters without checking the status of the UE upload buffers or the eNB/AP download buffers. In yet another embodiment, the UE performs the traffic steering based on the latest RAN assistance information and a time elapsed since the last transmission or receipt of data.