摘要:
The present invention relates to methods and compounds for regulating or enhancing erthropoiesis and iron metabolism, and for treating or preventing iron deficiency and anemia of chronic disease.
摘要:
The present invention relates to methods and agents for reducing blood pressure. Methods and agents for reducing diastolic blood pressure, for reducing systolic blood pressure, and for reducing mean arterial pressure are also provided.
摘要:
A method for making a semiconductor device which may include forming a first monocrystalline layer comprising a first material having a first lattice constant, a second monocrystalline layer including a second material having a second lattice constant different than the first lattice constant, and a lattice matching layer between the first and second monocrystalline layers and comprising a superlattice. More particularly, the superlattice may include a plurality of groups of layers, and each group of layers may include a plurality of stacked semiconductor monolayers defining a semiconductor base portion and at least one non-semiconductor monolayer thereon. Furthermore, the at least one non-semiconductor monolayer may be constrained within a crystal lattice of adjacent base semiconductor portions, and at least some semiconductor atoms from opposing base semiconductor portions may be chemically bound together through the at least one non-semiconductor monolayer therebetween.
摘要:
An architecture of an RFID system that facilitates the accessing of RFID tag data within an RFID environment. The architecture includes a plurality of RFID readers, each reader being operative to transmit a first RF signal for scanning at least one RFID tag disposed within an RF coverage region associated with the reader, and to receive at least one second RF signal including tag data in response to the scanning of the tag. The architecture further includes at least one host computer operative to execute at least one client application, and at least one controller/processor communicably coupled to the plurality of readers and the at least one host computer. The controller/processor is operative to control operation of the plurality of readers, to process the tag data received by the plurality of readers, and to provide the processed tag data to the at least one host computer for use by the at least one client application executing thereon.
摘要:
A method for making a semiconductor device may include forming a superlattice comprising a plurality of stacked groups of layers adjacent a substrate. Each group of layers of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The method may further include forming a high-K dielectric layer on the electrode layer, and forming an electrode layer on the high-K dielectric layer and opposite the superlattice.
摘要:
A semiconductor device may include a superlattice comprising a plurality of stacked groups of layers. Each group of layers of the superlattice may include a plurality of stacked base silicon monolayers defining a base silicon portion and an energy band-modifying layer thereon. The energy band-modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base silicon portions. The semiconductor device may further include a semiconductor layer adjacent the superlattice and comprising at least one first region therein including a first conductivity type dopant. The superlattice may also include at least one second region therein including a second conductivity type dopant to define, with the at least one first region, at least one semiconductor junction.
摘要:
A semiconductor device may include a first monocrystalline layer comprising a first material having a first lattice constant. A second monocrystalline layer may include a second material having a second lattice constant different than the first lattice constant. The device may also include a lattice matching layer between the first and second monocrystalline layers and comprising a superlattice. The superlattice may include a plurality of groups of layers, and each group of layers may include a plurality of stacked semiconductor monolayers defining a semiconductor base portion and at least one non-semiconductor monolayer thereon. The at least one non-semiconductor monolayer may be constrained within a crystal lattice of adjacent base semiconductor portions, and at least some semiconductor atoms from opposing base semiconductor portions may be chemically bound together through the at least one non-semiconductor monolayer therebetween.
摘要:
A method for making an electronic device may include forming a selectively polable superlattice comprising a plurality of stacked groups of layers. Each group of layers of the selectively polable superlattice may include a plurality of stacked semiconductor monolayers defining a semiconductor base portion and at least one non-semiconductor monolayer thereon. The at least one non-semiconductor monolayer may be constrained within a crystal lattice of adjacent silicon portions, and at least some semiconductor atoms from opposing base semiconductor portions may be chemically bound together through the at least one non-semiconductor monolayer therebetween. The method may further include coupling at least one electrode to the selectively polable superlattice for selective poling thereof.
摘要:
A method for making a semiconductor device may include forming a superlattice including a plurality of stacked groups of layers, with each group of layers comprising a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The method may also include performing at least one anneal prior to completing forming of the superlattice.
摘要:
An electronic device may include a poled superlattice comprising a plurality of stacked groups of layers and having a net electrical dipole moment. Each group of layers of the poled superlattice may include a plurality of stacked semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer thereon. The at least one non-semiconductor monolayer may be constrained within a crystal lattice of adjacent base semiconductor portions, and at least some semiconductor atoms from opposing base semiconductor portions may be chemically bound together through the at least one non-semiconductor monolayer therebetween. The electronic device may further include at least one electrode coupled to the poled superlattice.