Abstract:
In one embodiment, a processor includes at least one core and an interface circuit to interface the at least one core to additional circuitry of the processor. In response to an in-field self test instruction, at least one core may save state to a low power memory, enter into a diagnostic sleep state and execute an in-field self test in the diagnostic sleep state in which the at least one core appears to be inactive. Other embodiments are described and claimed.
Abstract:
Technologies of managing power during an activation cycle of a processor core or other compute domain include determining new operation limits for active processor cores or other compute domains during an activation cycle of a hibernating processor core or other hibernating compute domain to reduce the likelihood of a power surge during the activation of the hibernating processor core or other compute domain. The active processor cores or other compute domain are monitored until their operating points are at or below the new operating limits. Thereafter, the hibernating processor core or other hibernating compute domain is activated.
Abstract:
Described is a controller that provides in-situ state retention using a closed loop global retention clamp. The controller addresses di/dt and reliability constraints using an adaptive scheme where steps with smaller current are quickly changed whereas steps with larger current are changed slowly. The loop controller of a voltage regulator is modified for controlling not only retention Vmin during a low power state (e.g., C1LP), but also to control fast wake up the low power state (e.g., from C1LP and from C6).
Abstract:
In an embodiment, a processor includes a plurality of cores to independently execute instructions, a shared cache coupled to the cores and including a plurality of lines to store data, and a power controller including a low power control logic to calculate a flush latency to flush the shared cache based on a state of the plurality of lines. Other embodiments are described and claimed.
Abstract:
In an embodiment, a processor includes a plurality of cores to independently execute instructions, a shared cache coupled to the cores and including a plurality of lines to store data, and a power controller including a low power control logic to calculate a flush latency to flush the shared cache based on a state of the plurality of lines. Other embodiments are described and claimed.
Abstract:
A method and system for dynamic or run-time reallocation of leakage current and dynamic power supply current of a processor. In one embodiment of the invention, the processor uses the variation in the leakage current of the processor to reduce the maximum current dissipation or power supply current of the processor (ICCmax). By reducing the maximum current dissipation, the system cost can be reduced as a less expensive power delivery system is required in one embodiment of the invention.
Abstract:
In one embodiment, a processor includes at least one core and an interface circuit to interface the at least one core to additional circuitry of the processor. In response to an in-field self test instruction, at least one core may save state to a low power memory, enter into a diagnostic sleep state and execute an in-field self test in the diagnostic sleep state in which the at least one core appears to be inactive. Other embodiments are described and claimed.
Abstract:
An apparatus comprising: a flip-flip comprising a master stage and a slave stage, wherein the slave stage is coupled to the master stage, wherein the master and slave stages are coupled to a first power supply rail; and a scan circuitry coupled to the slave stage of the flip-flip, wherein at least a portion of the scan circuitry is coupled to a second power supply rail.
Abstract:
Technologies of managing power during an activation cycle of a processor core or other compute domain include determining new operation limits for active processor cores or other compute domains during an activation cycle of a hibernating processor core or other hibernating compute domain to reduce the likelihood of a power surge during the activation of the hibernating processor core or other compute domain. The active processor cores or other compute domain are monitored until their operating points are at or below the new operating limits. Thereafter, the hibernating processor core or other hibernating compute domain is activated.
Abstract:
In one embodiment, a processor includes at least one core and an interface circuit to interface the at least one core to additional circuitry of the processor. In response to an in-field self test instruction, at least one core may save state to a low power memory, enter into a diagnostic sleep state and execute an in-field self test in the diagnostic sleep state in which the at least one core appears to be inactive. Other embodiments are described and claimed.