Abstract:
Embodiments herein relate to torque controlled drivers to simultaneously drive fasteners to secure a thermal transfer device to an integrated circuit package. In various embodiments, a torque controlled driver may include a gearbox, a driver with a torque controller and a motor with a rotating shank, a motor gear coupled concentrically with the rotating shank, a bit drive gear in rotational engagement with the motor gear to drive a bit sized to drive a fastener to secure a thermal transfer device to an integrated circuit package, where the gearbox is to hold the motor gear in a position about a motor gear rotational axis and the drive gear about a drive gear rotational axis such that the motor gear and the bit drive gear maintain rotational engagement as the motor gear rotates. Other embodiments may be described and/or claimed.
Abstract:
Embodiments of the present disclosure provide techniques and configurations for inspection of a package assembly with a thermal solution, in accordance with some embodiments. In embodiments, an apparatus for inspection of a package assembly with a thermal solution may include a first fixture to house the package assembly on the apparatus, and a second fixture to house at least a portion of a thermal solution that is to be disposed on top of the package assembly. The apparatus may further include a load actuator, to apply a load to a die of the package assembly, via the thermal solution, and a plurality of sensors disposed around the thermal solution and the package assembly, to perform in situ thermal and/or mechanical measurements associated with the application of the load to the die of the package assembly. Other embodiments may be described and/or claimed.
Abstract:
A thermal interface structure may be formed comprising a thermally conductive substrate having a first surface and an opposing second surface, a first liquid metal layer on the first surface of the thermally conductive substrate, and a second liquid metal layer on the second surface of the thermally conductive substrate. The thermal interface structure may be used in an integrated circuit assembly or package between at least one integrated circuit device and a heat dissipation device.
Abstract:
Embodiments include apparatuses, systems and methods for a computer device with a casing and a substance in the casing substantially surrounding a computer component in the casing. In embodiments, the computer device may be a command and control computer, such as for example, an autonomous or semi-autonomous vehicle. In embodiments, the substance may be an electrically isolative and shear-thickening fluid to provide thermo-mechanical protection to a computer component. In the described embodiments, the substance may dampen mechanical shock or vibrational impact on the processor and the memory. The shear-thickening gel may further be thermally conductive in embodiments. In the embodiments, the casing may be substantially filled with the substance and the substance is to conduct heat away from the processor and the memory toward an outer edge of the casing. Other embodiments may also be described and claimed.
Abstract:
A thermal interface structure may be formed comprising a thermally conductive substrate having a first surface and an opposing second surface, a first liquid metal layer on the first surface of the thermally conductive substrate, and a second liquid metal layer on the second surface of the thermally conductive substrate. The thermal interface structure may be used in an integrated circuit assembly or package between at least one integrated circuit device and a heat dissipation device.
Abstract:
Embodiments of the present disclosure provide techniques and configurations for inspection of a package assembly with a thermal solution, in accordance with some embodiments. In embodiments, an apparatus for inspection of a package assembly with a thermal solution may include a first fixture to house the package assembly on the apparatus, and a second fixture to house at least a portion of a thermal solution that is to be disposed on top of the package assembly. The apparatus may further include a load actuator, to apply a load to a die of the package assembly, via the thermal solution, and a plurality of sensors disposed around the thermal solution and the package assembly, to perform in situ thermal and/or mechanical measurements associated with the application of the load to the die of the package assembly. Other embodiments may be described and/or claimed.
Abstract:
Various embodiments of thermal compression bonding transient cooling solutions are described. Those embodiments include a an array of vertically separated micro channels coupled to a heater surface, wherein every outlet micro channel comprises two adjacent inlet micro channel, and wherein an inlet and outlet manifold are coupled to the array of micro channels, and wherein the heater surface and the micro channels are coupled within the same block.
Abstract:
Embodiments herein relate to torque controlled drivers to simultaneously drive fasteners to secure a thermal transfer device to an integrated circuit package. In various embodiments, a torque controlled driver may include a gearbox, a driver with a torque controller and a motor with a rotating shank, a motor gear coupled concentrically with the rotating shank, a bit drive gear in rotational engagement with the motor gear to drive a bit sized to drive a fastener to secure a thermal transfer device to an integrated circuit package, where the gearbox is to hold the motor gear in a position about a motor gear rotational axis and the drive gear about a drive gear rotational axis such that the motor gear and the bit drive gear maintain rotational engagement as the motor gear rotates. Other embodiments may be described and/or claimed.
Abstract:
Various embodiments of thermal compression bonding transient cooling solutions are described. Those embodiments include a an array of vertically separated micro channels coupled to a heater surface, wherein every outlet micro channel comprises two adjacent inlet micro channel, and wherein an inlet and outlet manifold are coupled to the array of micro channels, and wherein the heater surface and the micro channels are coupled within the same block.