Abstract:
A stainless steel sheet for fuel cell separators comprises a predetermined chemical composition, wherein the stainless steel sheet has a textured structure at a surface thereof, an average interval between projected parts of the textured structure being 20 nm or more and 200 nm or less, and a ratio [Cr]/[Fe] of an atomic concentration of Cr existing in chemical form other than metal to an atomic concentration of Fe existing in chemical form other than metal at the surface of the stainless steel sheet is 2.0 or more.
Abstract:
A stainless steel sheet for fuel cell separators comprises: a predetermined chemical composition; and fine precipitates containing Cr and Ti at a steel sheet surface, wherein an average equivalent circular diameter of the fine precipitates is 20 nm or more and 500 nm or less, and a number of the fine precipitates existing per 1 μm2 at the steel sheet surface is three or more.
Abstract:
A lubricant coating material for stainless steel sheets that has excellent press formability (deep drawability and mold galling resistance) and a lubricated stainless steel sheet in which the same is used includes: a lubricant coating material for stainless steel sheets that contains an acrylic resin and polyethylene wax, the polyethylene wax having a melting point of 115° C. or greater, and the content of the polyethylene wax ranging from greater than 20 parts by mass to 50 parts by mass with respect to 100 parts by mass of the acrylic resin; and a lubricated stainless steel sheet in which the same is used.
Abstract:
A metal sheet for separators of polymer electrolyte fuel cells having both excellent corrosion resistance in the use environment of separators of polymer electrolyte fuel cells and excellent adhesion property between a substrate and a surface-coating layer even in the case where the surface-coating layer is made thinner is provided. A metal sheet for separators of polymer electrolyte fuel cells includes: a substrate made of metal; and a surface-coating layer with which the substrate is coated, with a strike layer in between, wherein a coating weight of the strike layer is 0.001 g/m2 to 1.0 g/m2.
Abstract:
The surface of a substrate made of stainless-steel foil is coated with a Sn alloy layer, with a strike layer in between. The coating ratio of the strike layer on the substrate is 2% to 70%.
Abstract:
Provided is a ferritic stainless steel sheet for current collectors for sulfide-based solid-state batteries, which has excellent sulfidation resistance and adhesiveness. The ferritic stainless steel sheet has a component composition containing Cr in an amount of 16% by mass or more, wherein the surface of the ferritic stainless steel sheet has an uneven structure having recessed portions and projecting portions, the average height of the projecting portions is 20 to 50 nm inclusive, the average distance between the projecting portions is 20 to 200 nm inclusive, and the [Cr]/[Fe], i.e., the ratio of the atom concentration of Cr that is present in a form other than the metal form to the atom concentration of Fe that is present in a form other than the metal form, on the surface of the ferritic stainless steel sheet is 1.0 or more.
Abstract:
A ferritic stainless steel having good corrosion resistance and good brazability in the case where brazing is performed with a Ni-containing brazing filler metal at a high temperature. The ferritic stainless steel has a chemical composition comprising, by mass %, C: 0.003% to 0.020%, Si: 0.05% to 0.60%, Mn: 0.05% to 0.30%, P: 0.040% or less, S: 0.020% or less, Cr: 17.0% to 22.0%, Ni: 0.20% to 0.80%, Cu: 0.30% to 0.80%, Mo: 0.01% to 0.10%, Al: 0.001% to 0.015%, Nb: 0.25% to 0.60%, N: 0.020% or less, and the balance being Fe and inevitable impurities. The expression 4Ni−(Si+Mn)≥0.00% is satisfied, where each of Ni, Si, and Mn denotes a content, by mass %, of a corresponding element.
Abstract:
A production method for a stainless steel sheet for fuel cell separators comprises: preparing a stainless steel sheet as a material; thereafter removing an oxide layer at a surface of the stainless steel sheet; and thereafter subjecting the stainless steel sheet to electrolytic etching treatment in an active region of the stainless steel sheet.
Abstract:
A stainless steel sheet for fuel cell separators including a substrate made of stainless steel sheet, and low-electrical-resistivity metal particles, where the substrate has a textured structure formed on a surface thereof with the average interval between the projected parts of the textured structure being 10 nm or more and 300 nm or less, the low-electrical-resistivity metal particles have an average particle size of 50 nm to 1.0 μm, the low-electrical-resistivity metal particles are attached to the surface of the substrate having the textured structure at a density of 1.0 particle or more for 1 μm2, and a ratio of the average particle size of the low-electrical-resistivity metal particles to the average interval between the projected parts is 1.0 to 15.0.
Abstract:
Provided is a ferritic stainless steel foil for a solar cell substrate excellent in terms of threading performance with which it is possible to maintain sufficient hardness to suppress, for example, buckling during threading when a solar cell is manufactured using a roll-to-roll method. The ferritic stainless steel foil for a solar cell substrate has a chemical composition containing, by mass %, Cr: 14% or more and 18% or less, a Vickers hardness of Hv250 or more, and a Vickers hardness of Hv250 or more after the substrate has undergone an optical absorber layer growth process in which the substrate is held in a temperature range of 450° C. or higher and 600° C. or lower for a duration of 1 minute or more.