Abstract:
A method for reducing interfacial layer (IL) thickness for high-k dielectrics and metal gate stack is provided. In one embodiment, the method includes forming an interfacial layer on a semiconductor substrate, etching back the interfacial layer, depositing a high-k dielectric material over the interfacial layer, and forming a metal gate over the high-k dielectric material. The IL can be chemical oxide, ozonated oxide, thermal oxide, or formed by ultraviolet ozone (UVO) oxidation process from chemical oxide, etc. The etching back of IL can be performed by a Diluted HF (DHF) process, a vapor HF process, or any other suitable process. The method can further include performing UV curing or low thermal budget annealing on the interfacial layer before depositing the high-k dielectric material.
Abstract:
A method for producing a SiGe stressor with high Ge concentration is provided. The method includes providing a semiconductor substrate with a source area, a drain area, and a channel in between; depositing the first SiGe film layer on the source area and/or the drain area; performing a low temperature thermal oxidation, e.g., a high water vapor pressure wet oxidation, to form an oxide layer at the top of the first SiGe layer and to form the second SiGe film layer with high Ge percentage at the bottom of the first SiGe film layer without Ge diffusion into the semiconductor substrate; performing a thermal diffusion to form the SiGe stressor from the second SiGe film layer, wherein the SiGe stressor provides uniaxial compressive strain on the channel; and removing the oxide layer. A Si cap layer can be deposited on the first SiGe film layer prior to performing oxidation.
Abstract:
This description relates to a method including forming an interfacial layer over a semiconductor substrate. The method further includes etching back the interfacial layer. The method further includes performing an ultraviolet (UV) curing process on the interfacial layer. The UV curing process includes supplying a gas flow rate ranging from 10 standard cubic centimeters per minute (sccm) to 5 standard liters per minute (slm), wherein the gas comprises inert gas, and heating the interfacial layer at a temperature less than or equal to 700° C. The method further includes depositing a high-k dielectric material over the interfacial layer.
Abstract:
A gate-last method for forming a metal gate transistor is provided. The method includes forming an opening within a dielectric material over a substrate. A gate dielectric structure is formed within the opening and over the substrate. A work function metallic layer is formed within the opening and over the gate dielectric structure. A silicide structure is formed over the work function metallic layer.
Abstract:
A gate-last method for forming a metal gate transistor is provided. The method includes forming an opening within a dielectric material over a substrate. A gate dielectric structure is formed within the opening and over the substrate. A work function metallic layer is formed within the opening and over the gate dielectric structure. A silicide structure is formed over the work function metallic layer.
Abstract:
A CMOS FinFET semiconductor device provides an NMOS FinFET device that includes a compressive stress metal gate layer over semiconductor fins and a PMOS FinFET device that includes a tensile stress metal gate layer over semiconductor fins. A process for forming the same includes a selective annealing process that selectively converts a compressive metal gate film formed over the PMOS device to the tensile stress metal gate film.
Abstract:
An integrated circuit device and method for manufacturing the integrated circuit device provide improved control over a shape of a trench for forming the source and drain features of integrated circuit device, by forming a second doped region in a first doped region and removing the first and the second doped regions by a first and a second wet etching processes.
Abstract:
A method of forming a semiconductor device includes chemically cleaning a surface of a substrate to form a chemical oxide material on the surface. At least a portion of the chemical oxide material is removed at a removing rate of about 2 nanometer/minute (nm/min) or less. Thereafter, a gate dielectric layer is formed over the surface of the substrate.
Abstract:
A structure for a field effect transistor on a substrate that includes a gate stack, an isolation structure and a source/drain (S/D) recess cavity below the top surface of the substrate disposed between the gate stack and the isolation structure. The recess cavity having a lower portion and an upper portion. The lower portion having a first strained layer and a first dielectric film. The first strained layer disposed between the isolation structure and the first dielectric film. A thickness of the first dielectric film less than a thickness of the first strained layer. The upper portion having a second strained layer overlying the first strained layer and first dielectric film.