摘要:
Transistors fabricated on SSOI (Strained Silicon On Insulator) substrate, which comprises a strained silicon layer disposed directly on an insulator layer, have enhanced device performance due to the strain-induced band modification of the strained silicon device channel and the limited silicon volume because of the insulator layer. The present invention discloses a SSOI substrate fabrication process comprising various novel approaches. One is the use of a thin relaxed SiGe layer as the strain-induced seed layer to facilitate integration and reduce processing cost. Another is the formation of split implant microcracks deep in the silicon substrate to reduce the number of threading dislocations reaching the strained silicon layer. And lastly is the two step annealing/thinning process for the strained silicon/SiGe multilayer film transfer without blister or flaking formation.
摘要:
A method is provided for transferring a single-crystal silicon (Si) film to a glass substrate. The method deposits a germanium (Ge)-containing material overlying a Si wafer, forming a sacrificial Ge-containing film. A single-crystal Si film is formed overlying the sacrificial Ge-containing film. The Si film surface is bonded to a transparent substrate, forming a bonded substrate. The bonded substrate is immersed in a Ge etching solution to remove the sacrificial Ge-containing film, which separates the transparent substrate from the Si wafer. The result is a transparent substrate with an overlying single crystal Si film. Optionally, channels can be formed to distribute the Ge etching solution, and promote the removal of the Ge-containing film.
摘要:
Transistors fabricated on SSOI (Strained Silicon On Insulator) substrate, which comprises a strained silicon layer disposed directly on an insulator layer, have enhanced device performance due to the strain-induced band modification of the strained silicon device channel and the limited silicon volume because of the insulator layer. The present invention discloses SSOI substrate fabrication processes comprising various novel approaches. One is the use of a thin relaxed SiGe layer as the strain-induced seed layer to facilitate integration and reduce processing cost. Another is the formation of split implant microcracks deep in the silicon substrate to reduce the number of threading dislocations reaching the strained silicon layer. And lastly is a two step annealing/thinning process for the strained silicon/SiGe multilayer film transfer without blister or flaking formation.
摘要:
A method of forming a relaxed SiGe layer having a high germanium content in a semiconductor device includes preparing a silicon substrate; depositing a strained SiGe layer; implanting ions into the strained SiGe layer, wherein the ions include silicon ions and ions selected from the group of ions consisting of boron and helium, and which further includes implanting H+ ions; annealing to relax the strained SiGe layer, thereby forming a first relaxed SiGe layer; and completing the semiconductor device.
摘要:
A method is provided for forming a liquid phase epitaxial (LPE) germanium (Ge)-on-insulator (GOI) thin-film with a smooth surface. The method provides a silicon (Si) wafer, forms a silicon nitride insulator layer overlying the Si wafer, and selectively etches the silicon nitride insulator layer, forming a Si seed access region. Then, the method conformally deposits Ge overlying the silicon nitride insulator layer and Si seed access region, forming a Ge layer with a first surface roughness, and smoothes the Ge layer using a chemical-mechanical polish (CMP) process. Typically, the method encapsulates the Ge layer and anneals the Ge layer to form a LPE Ge layer. A Ge layer is formed with a second surface roughness, less than the first surface roughness. In some aspects, the method forms an active device in the LPE Ge layer.
摘要:
A method of fabricating a one-transistor memory includes, on a single crystal silicon substrate, depositing a bottom electrode structure on a gate oxide layer; implanting ions to form a source region and a drain region and activating the implanted ions spin coating the structure with a first ferroelectric layer; depositing a second ferroelectric layer; and annealing the structure to provide a c-axis ferroelectric orientation.
摘要:
A rapid thermal process (RTP) provides steps wherein silicon wafers that are pre-coated with barrier metal films by either in-situ or ex-situ CVD or physical vapor deposition (PVD) are pre-treated, prior to deposition of a Cu film thereon, in a temperature range of between 250 and 550 degrees Celsius in a non-reactive gas such as hydrogen gas (H2), argon (Ar), or helium (He), or in an ambient vacuum. The chamber pressure typically is between 0.1 mTorr and 20 Torr, and the RTP time typically is between 30 to 100 seconds. Performing this rapid thermal process before deposition of the Cu film results in a thin, shiny, densely nucleated, and adhesive Cu film deposited on a variety of barrier metal surfaces. The pre-treatment process eliminates variations in the deposited Cu film caused by Cu precursors and is insensitive to variation in precursor composition, volatility, and other precursor variables. Accordingly, the process disclosed herein is an enabling technology for the use of metal organic CVD (MOCVD) Cu in IC fabrication.
摘要:
A modified STI process is provided comprising forming a first polysilicon layer over a substrate. Forming a trench through the first polysilicon layer and into the substrate, and filling the trench with an oxide layer. Depositing a second polysilicon layer over the oxide, such that the bottom of the second polysilicon layer within the trench is above the bottom of the first polysilicon layer, and the top of the second polysilicon layer within the trench is below the top of the first polysilicon layer. The resulting structure may then be planarized using a CMP process. An alignment key may be formed by selectively etching the oxide layer. A third polysilicon layer may then be deposited and patterned using photoresist to form a gate structure. During patterning, exposed second polysilicon layer is etched. An etch stop is detected at the completion of removal of the second polysilicon layer. A thin layer of the first polysilicon layer remains, to be carefully removed using a subsequent selective etch process.
摘要:
A method of controlling strain in a single-crystal, epitaxial oxide film, includes preparing a silicon substrate; forming a silicon alloy layer taken from the group of silicon alloy layer consisting of Si1-xGex and Si1-yCy on the silicon substrate; adjusting the lattice constant of the silicon alloy layer by selecting the alloy material content to adjust and to select a type of strain for the silicon alloy layer; depositing a single-crystal, epitaxial oxide film, by atomic layer deposition, taken from the group of oxide films consisting of perovskite manganite materials, single crystal rare-earth oxides and perovskite oxides, not containing manganese; and rare earth binary and ternary oxides, on the silicon alloy layer; and completing a desired device.
摘要翻译:一种控制单晶外延氧化膜中的应变的方法包括制备硅衬底; 从由Si 1-x Ge x Si和Si 1-y C C组成的硅合金层组形成硅合金层 > y sub>; 通过选择合金材料含量来调整硅合金层的晶格常数,并选择一种用于硅合金层的应变; 从由不含锰的钙钛矿亚锰酸盐材料,单晶稀土氧化物和钙钛矿氧化物组成的氧化膜组中,通过原子层沉积法沉积单晶外延氧化膜; 和稀土二元和三元氧化物,在硅合金层上; 并完成所需的设备。
摘要:
A method of fabricating a CMOS have self-aligned shallow trench isolation, includes preparing a silicon substrate; forming a gate stack; depositing a layer of first polysilicon; trenching the substrate by shallow trench isolation to form a trench; filling the trench with oxide; depositing a second layer of polysilicon wherein the top surface of the second polysilicon layer is above the top surface of the first polysilicon layer; depositing a sacrificial oxide layer having a thickness of at least 1.5× that of the first polysilicon layer; CMP the sacrificial oxide layer to the level of the upper surface of the second polysilicon layer; depositing a third layer of polysilicon; patterning and etching the gate stack; implanting ions to form a source region, a drain region and the polysilicon gate; and completing the CMOS structure.