Abstract:
The present invention discloses a fire resistant laminate and incorporating the laminate into an encapsulant for a photovoltaic module that may be used in a photovoltaic building material. More particularly, the present invention relates to fire resistant encapsulant that may be used in a triple junction amorphous silicon photovoltaic module that is fire resistant on a wide variety of buildings roofs, including residential housing, and that is flexible and lightweight. A fire resistant additive, such as solid glass spheres, may be added to encapsulant material to produce a fire resistant, cut resistant, lightweight photovoltaic device.
Abstract:
A method of heating in a vacuum atmosphere in the presence of a plasma, comprises the following steps: a) providing infrared radiation means (16) in a vacuum chamber (10); b) providing a first electrical conductor (18) to the infrared radiation means (16); c) providing a second electrical conductor (20) from the infrared radiation means (16); d) putting an electrical voltage over said infrared radiation means (16); e) preventing the first conductor (18) and the second conductor (20) from having an electrical voltage above +55 Volt. The advantage is that arcing is avoided.
Abstract:
Disclosed herein is an improved gas gate for interconnecting regions of differing gaseous composition and/or pressure, more particularly between atmosphere and a vacuum. The gas gate includes a cylinder within a housing situated between the regions of differing gaseous pressure, wherein the gas gate provides for choke mode transonic flow of air leaks between the regions. A web of substrate material is adapted to move between the regions with at least one roller in a first region and at least one roller in a second region. The rollers are positioned to create sufficient tension as the web advances over the top peripheral portion of the cylinder between the two regions or under the bottom peripheral portion of the cylinder between the two regions.
Abstract:
Apparatus and method for the vacuum deposition of at least two different layers of thin film material onto a substrate by two different vacuum deposition processes. Also disclosed is a novel linear applicator for using microwave enhanced CVD to uniformly deposit a thin film of material over an elongated substrate.
Abstract:
There is disclosed new and improved photovoltaic devices which provide increased short circuit currents and efficiencies over that previously obtainable from prior devices. The disclosed devices include incident radiation directing means for directing at least a portion of the incident light through the active region or regions thereof at angles sufficient to substantially confine the directed radiation in the devices. This allows substantially total utilization of photogenerated electron-hole pairs. Further, because the light is directed through the active region or regions at such angles, the active regions can be made thinner to also increase collection efficiencies.The incident radiation directors can be random surface or bulk reflectors to provide random scattering of the light, or periodic surface or bulk reflector to provide selective scattering of the light.While the present invention is applicable to photovoltaic devices formed from any type of semiconductor material, as for example, crystalline, polycrystalline, or amorphous semiconductor alloys or any combination thereof, disclosure herein is primarily directed to photovoltaic devices formed from amorphous silicon alloys preferably incorporating fluorine as a density of states reducing element. The disclosure is also directed to, without limitation, photovoltaic devices of the p-i-n configuration, both as single cells and multiple cells arranged in tandem.
Abstract:
Processes of identifying small pressure irregularities in a system used for continuous plasma deposition are provided. Sensitive light scattering is used to detect the presence of nucleated particles in a detection area that is outside the plasma region of high electric field whereby the presence of the particles indicates a pressure abnormality in the plasma deposition chamber. The pressure of the plasma deposition chamber is then adjusted to reduce or eliminate the presence of particles within the detection area and to optimize deposition of material on a substrate.
Abstract:
A apparatus for depositing one or more thin film layers on one or more continuous web or discrete substrates. The apparatus includes a pay-out unit for dispensing one or a plurality of webs, a deposition unit that deposits a series of one or more thin film layers thereon, and a take-up unit that receives and stores the webs following deposition. In a preferred embodiment, deposition occurs through plasma enhanced chemical vapor deposition in which a plasma region is formed between a cathode in the deposition unit and one or more vertically-oriented webs. The instant deposition apparatus includes a support system for guiding and stabilizing the transport of one or more webs or substrates through the deposition chambers. The support system includes a magnetic guidance assembly and an edge-stabilizing assembly that operate to inhibit perturbations of the motion of a web or substrate in directions other than the direction of transport through the apparatus.
Abstract:
A microwave apparatus for sustaining a substantially uniform plasma over a relatively large area. The microwave apparatus comprises a vacuum vessel for sustaining the plasma in a plasma region thereof. The apparatus further comprises a nonevanescent microwave applicator having means for controlling the cutoff frequency thereof. The microwave applicator may comprise a waveguide and a volume of dielectric material disposed within the waveguide. Alternately, the microwave applicator may comprise ridge waveguide.
Abstract:
A method of forming a high flux of activated species, such as ions, of an energy transferring gas by employing a substantial pressure differential between a first conduit in which the energy transferring gas is introduced into a vacuumized enclosure and the background pressure which exits in said enclosure. In one embodiment, the flow rate of the energy transferring gas flowing through said first conduit, when taken in conjunction with said pressure differential, causes the high flux of activated species of the energy transferring gas to collide with a precursor deposition/etchant gas, remotely introduced into the enclosure through a second conduit, for forming deposition/etchant species therefrom. In an alternate embodiment, the pressure differential causes those activated species, themselves, to be either deposited upon or etched away from the surface of a remotely positioned substrate.
Abstract:
An improved magnetic gas gate is adapted to operatively interconnect two adjacent chambers, in the first chamber of which process gases are introduced for depositing a first layer upon a magnetic substrate and in the second chamber of which process gases are introduced for depositing a second layer atop the first layer. Since it is important to prevent the second chamber gases from contaminating the first chamber gases, a constant pressure differential established between the chambers is employed to provide a substantially unidirectional flow of gases from the first chamber into the second chamber. Magnetic gas gates have been used in the prior art to reduce the size of gas gate passageways by creating a magnetic field which urges the unlayered surface of the substrate toward a wall of the passageway. Although the size of the passageway opening is thereby reduced with a corresponding reduction in back diffusion of gases from the second chamber, the passageway is simultaneously divided into a relatively large flow channel and a relatively narrow flow channel. The present invention reduces the back diffusion of gases through the relatively narrow flow channel by forming a plurality of elongated grooves in the passageway wall toward which the unlayered surface of the substrate is urged. The grooves are substantially coextensive with the length of the passageway so as to operatively interconnect the adjacent chambers. The flow channels thus established are adapted to accommodate a sufficient flow of inert sweep gases to further reduce the back diffusion of process gases through the narrow flow channel.