Abstract:
A chemical planarization method according to an embodiment includes a step of forming a hydrophobic protective film on a film to be processed with surface asperity. A dissolving solution for dissolving the film to be processed is supplied to the surface of the protective film. A processing body with a hydrophobic surface is brought into contact with or brought closed to the protective film, and a portion of the protective film is selectively removed by hydrophobic interaction from the film to be processed. The film to be processed is dissolved by the dissolving solution after the portion of the protective film is removed.
Abstract:
In accordance with an embodiment, a polishing method includes supplying slurry to a surface of a polishing layer including a polymer, and bringing a polishing object into contact with the polishing layer to polish the polishing object. The polishing layer has a fibrous first substance mixed therein or contains a second substance. The second substance is higher in specific heat and higher in thermal conductivity than the polymer in such a manner that the second substance is surrounded by the polymer.
Abstract:
According to one embodiment, a planarization method and a planarization apparatus are provided. In the planarization method, a work surface of a work piece is planarized by bringing the work surface of the work piece containing a silicon oxide film and a surface of a solid plate onto which hydrogen ions are adsorbed, into contact or extremely close proximity with one another in a state in which a process liquid containing fluorine ions is supplied to the surface of the solid plate.
Abstract:
According to one embodiment, the stacked body includes a plurality of electrode layers stacked with an insulator interposed. The semiconductor body extends in a stacking direction through the stacked body. The semiconductor body includes an upper end portion protruding above the stacked body. The stacked film is provided between the semiconductor body and the electrode layers. The stacked film includes a charge storage portion. The conductor is provided at an upper surface and a side surface of the upper end portion of the semiconductor body. The conductor electrically contacts the upper surface and the side surface. The interconnect is provided above the conductor. The interconnect is electrically connected to the conductor.
Abstract:
According to one embodiment, a planarization method and a planarization apparatus are provided. In the planarization method, a work surface of a work piece is planarized by bringing the work surface of the work piece containing a silicon oxide film and a surface of a solid plate onto which hydrogen ions are adsorbed, into contact or extremely close proximity with one another in a state in which a process liquid containing fluorine ions is supplied to the surface of the solid plate.
Abstract:
According to one embodiment, a manufacturing method of a semiconductor device comprises forming a to-be-processed film includes a convex potion and concave potion on its surface on a semiconductor substrate via layers having a relative dielectric constant smaller than that of SiO2, planarizing the surface of the to-be-processed film, and etching the planarized surface of the to-be-processed film.
Abstract:
In accordance with an embodiment, a manufacturing method of a semiconductor device includes bringing a first catalyst into contact with a workpiece to form an oxide film on a surface of the workpiece, and bringing a second catalyst different from the first catalyst and the oxide film into contact with each other or moving the second catalyst and the oxide film closer to each other to elute the oxide film into a treatment liquid.
Abstract:
In accordance with an embodiment, a manufacturing method of a semiconductor device includes: respectively forming a first layer and a second layer at the top of a protruding portion and at the bottom of a depressed portion of a treatment target having protrusions/depressions in such a manner that sidewalls of the protruding portion is exposed, supplying a treatment liquid to the treatment target having the first layer and the second layer, bringing a catalyst into contact with or closer to the first layer and thereby increasing the dissolution rate of the first layer in dissolving into the treatment liquid and dissolving the first layer into the treatment liquid, and sequentially dissolving the protruding portion and the second layer into the treatment liquid after the dissolution of the first layer.
Abstract:
In accordance with an embodiment, a polishing apparatus includes a polishing table and a polishing head. A retainer ring is attached to a surface of the polishing head. The surface of the polishing head faces the polishing table. The retainer ring includes a ceramic material. The fracture toughness of the ceramic material is 4 MPa·m1/2 or more.
Abstract:
In a substrate processing method according to the embodiment, a first material is implanted into a surface of a target film to modify the surface of the target film. The surface of the target film is dissolved to remove the surface of the target film by bringing a catalytic material close to the surface of the target film or by contacting the catalytic material to the surface of the target film while supplying a process solution on the surface of the target film which has been modified.