Abstract:
In one embodiment, an AD converter includes a first (second) oscillation circuit, a first (second) counter, a first (second) arithmetic circuit, a first (second) subtracting circuit, an adder circuit, and a feedback circuit. The first oscillation circuit generates a first pulse signal having a frequency corresponding to a level of a first analog signal. The first counter counts the first pulse signal. The first arithmetic circuit generates a first signal corresponding to a change amount of a count value. The first subtracting circuit outputs a digital signal corresponding to a difference between the signals generated by the first and second arithmetic circuits. The adder circuit generates a sum signal of the signals generated by the first and second arithmetic circuits. The second subtracting circuit generates a difference signal between the sum signal and a reference signal. The feedback circuit inputs the difference signal to the first oscillation circuit.
Abstract:
The first amplifier operates according a first clock, changes voltages of a first terminal and a second terminal from a first fixed voltage to a second fixed voltage according to a voltage of an input signal and a first reference voltage, respectively, when an on period of a first clock starts, and keeps the voltages of the first and second terminals at the second fixed voltage, respectively, after the voltages of the first and second terminals reach the second fixed voltage and until the on period of the first clock ends, and the first comparator generates first and second logic signals that have logical levels different from each other, based on a difference between the voltages of the first and second terminals when the on period of a second clock whose on period at least partially overlaps with that of the first clock starts.
Abstract:
According to some embodiments, there is provided a signal sampling circuit in which the first sampling capacitor is connected to the first sampling switch, the second sampling capacitor is connected to the second sampling switch, the amplifier outputs a positive-side amplified signal by amplifying a signal input to the positive-side input terminal thereof and outputs a negative-side amplified signal by amplifying a signal input to the negative-side input terminal thereof, the first chopper switch is connected to the first sampling capacitor and the positive-side input terminal, the second chopper switch is connected to the first sampling capacitor and the negative-side input terminal, the third chopper switch is connected to the second sampling capacitor and the positive-side input terminal and the fourth chopper switch is connected to the second sampling capacitor and the negative-side input terminal.
Abstract:
An amplifier circuit has a sampling circuit to comprise a sampling capacitor which samples an input voltage and a plurality of switches, a quantizer to quantize an output voltage of the sampling circuit, a DA converter to output an analog signal depending on a quantization signal by the quantizer, and a feedback capacitor to feed the analog signal back to the output voltage of the sampling circuit.
Abstract:
An amplifying circuit according to an embodiment includes an input terminal, an output terminal, first and second operational amplifiers, first and second input impedance elements, first to third feedback impedance elements, and an adder. The first (second) operational amplifier includes an inversion input terminal connected to a first (third) node and an output terminal connected to a second (fourth) node. The first (second) input impedance element has one end connected to the input terminal and the other end connected to the first (third) node. The first (second) feedback impedance element has one end connected to the first (third) node and the other end connected to the second (fourth) node. The third feedback impedance element has one end connected to the first node and the other end connected to the fourth node. The adder adds output voltages of the first and second operational amplifiers.
Abstract:
An amplifying circuit according to an embodiment includes a sample and hold circuit, an operational amplifier, a feedback capacitance, and a level shift circuit. The sample and hold circuit includes a sampling capacitance to sample an analog input signal in a sampling phase. The operational amplifier amplifies and outputs the analog input signal held by the sampling capacitance in the amplifying phase. The feedback capacitance is connected between the input terminal of the operational amplifier and the analog output terminal. The level shift circuit includes a level shift capacitance to sample the analog input signal in the sampling phase. A plurality of level shift capacitances is provided and connected in cascade between the output terminal of the operational amplifier and the analog output terminal.
Abstract:
A signal processing circuit according to one embodiment includes a rectifier, a holder, a controller, and a setter. The rectifier generates a rectified voltage by rectifying an input voltage in which a signal voltage is superimposed on a common-mode voltage. The holder holds a voltage. The controller controls the holder so that the holder holds a voltage according to the rectified voltage generated by the rectifier. The setter sets the voltage held by the holder to a predetermined voltage at predetermined time intervals.
Abstract:
A receiver has a receiving unit to receive a radio signal, a signal detector to detect a reception signal in each of a plurality of set periods shifted in time to be overlapped in a partial period, and a demodulating unit to perform demodulation processing based on the reception signal. The signal detector has a smoothing unit to smooth the output signal of the receiving unit in each of the plurality of set periods, a comparing unit to output a signal obtained by comparing a level of the smoothed signal, with a threshold value, and an initializing unit to initialize the signal smoothed by the smoothing processing unit, every time the comparing unit compares the smoothed signal with the threshold value, and the demodulating unit performs the demodulation processing based on the smoothed signal determined to be the threshold value or more by the comparing unit.
Abstract:
According to an embodiment, a power supply noise cancelling circuit includes a generator, a first multiplier, a subtractor and a digital-to-analog converter. The generator generates a sine wave signal. The first multiplier multiplies a digital input signal by a digital signal based on the sine wave signal to generate a first digital product signal. The subtractor subtracts a digital signal based on the first digital product signal from the digital input signal to generate a digital difference signal. The digital-to-analog converter performs a digital-to-analog conversion on the digital difference signal to obtain an analog output signal.
Abstract:
According to an embodiment, an analog-to-digital (AD) converter includes a first AD conversion unit, a selector and a second AD conversion unit. The first AD conversion unit performs AD conversion of an analog signal in a first period to generate an upper-bit digital signal. The selector selects not less than one reference voltage based on the upper-bit digital signal to obtain a selected reference voltage group in a voltage range narrower than a full scale. The second AD conversion unit performs AD conversion of the analog signal by using the selected reference voltage group. The first period starts before settling of the analog signal up to an accuracy corresponding to a total resolution of the first AD conversion unit and the second AD conversion unit.