摘要:
The present invention relates to systems and methods for the measurement of analytes such as glucose. Raman and reflectance spectroscopy are used to measure a volume, of material such as a blood sample or tissue within a subject and determine a concentration of a blood analyte based thereon. The present invention further relates to a calibration method, constrained regularization (CR), and demonstrates its use for analyzing spectra including, for example, the measurement glucose concentrations using transcutaneous Raman spectroscopy.
摘要:
The present invention relates to the use of Raman spectroscopy for quantitative, non-invasive transcutaneous measurement of blood analytes, such as glucose. Raman spectroscopy is used to measure glucose transcutaneously, in patients whose blood glucose levels were monitored. Raman spectra were collected transcutaneously along with glucose reference values provided by standard capillary blood analysis. A partial least squares calibration was created from the data from each subject and validated using leave-one-out cross validation.
摘要:
The present invention relates to the use of Raman spectroscopy for quantitative, non-invasive transcutaneous measurement of blood analytes, such as glucose. Raman spectroscopy is used to measure glucose transcutaneously, in patients whose blood glucose levels were monitored. Raman spectra were collected transcutaneously along with glucose reference values provided by standard capillary blood analysis. A partial least squares calibration was created from the data from each subject and validated using leave-one-out cross validation.
摘要:
The invention relates to a combination (1) of control cabinet keys (2), individual keys being situated in the same plane but extending at a fixed angle (x) relative to one another and connected via a common center part (4, 5). Due to the fixed connection between the keys, during handling, a torque may be applied to a key (2) that is used. For ease of handling, a first unit (E1) and a second unit (E2) of keys extending at a fixed angle (x) relative to one another are provided, all units (E1, E2) have their own center part, and the units are detachably connected at their center parts (4, 5), and/or the keys are rotatable relative to one another, but only in a respective predefined plane.
摘要:
The present invention relates to a spectroscopic imaging system using autofluorescence and reflectance images to diagnose tissue. A preferred embodiment of the invention uses a plurality of light sources to illuminate a tissue region to provide the fluorescence and reflectance images, respectively.
摘要:
Preferred embodiments of the present invention are directed to systems for phase measurement which address the problem of phase noise using combinations of a number of strategies including, but not limited to, common-path interferometry, phase referencing, active stabilization and differential measurement. Embodiment are directed to optical devices for imaging small biological objects with light. These embodiments can be applied to the fields of, for example, cellular physiology and neuroscience. These preferred embodiments are based on principles of phase measurements and imaging technologies. The scientific motivation for using phase measurements and imaging technologies is derived from, for example, cellular biology at the sub-micron level which can include, without limitation, imaging origins of dysplasia, cellular communication, neuronal transmission and implementation of the genetic code. The structure and dynamics of sub-cellular constituents cannot be currently studied in their native state using the existing methods and technologies including, for example, x-ray and neutron scattering. In contrast, light based techniques with nanometer resolution enable the cellular machinery to be studied in its native state. Thus, preferred embodiments of the present invention include systems based on principles of interferometry and/or phase measurements and are used to study cellular physiology. These systems include principles of low coherence interferometry (LCI) using optical interferometers to measure phase, or light scattering spectroscopy (LSS) wherein interference within the cellular components themselves is used, or in the alternative the principles of LCI and LSS can be combined to result in systems of the present invention.
摘要:
The present invention relates to multimodal spectroscopy (MMS) as a clinical tool for the in vivo diagnosis of disease in humans. The MMS technology combines Raman and fluorescence spectroscopy. A preferred embodiment involves diagnosis cancer of the breast and of vulnerable atherosclerotic plaque, esophageal, colon, cervical and bladder cancer. MMS is used to provide a more comprehensive picture of the metabolic, biochemical and morphological state of a tissue than afforded by either Raman or fluorescence and reflectance spectroscopies alone.
摘要:
Preferred embodiments of the present invention are directed to systems for phase measurement which address the problem of phase noise using combinations of a number of strategies including, but not limited to, common-path interferometry, phase referencing, active stabilization and differential measurement. Embodiment are directed to optical devices for imaging small biological objects with light. These embodiments can be applied to the fields of, for example, cellular physiology and neuroscience. These preferred embodiments are based on principles of phase measurements and imaging technologies. The scientific motivation for using phase measurements and imaging technologies is derived from, for example, cellular biology at the sub-micron level which can include, without limitation, imaging origins of dysplasia, cellular communication, neuronal transmission and implementation of the genetic code. The structure and dynamics of sub-cellular constituents cannot be currently studied in their native state using the existing methods and technologies including, for example, x-ray and neutron scattering. In contrast, light based techniques with nanometer resolution enable the cellular machinery to be studied in its native state. Thus, preferred embodiments of the present invention include systems based on principles of interferometry and/or phase measurements and are used to study cellular physiology. These systems include principles of low coherence interferometry (LCI) using optical interferometers to measure phase, or light scattering spectroscopy (LSS) wherein interference within the cellular components themselves is used, or in the alternative the principles of LCI and LSS can be combined to result in systems of the present invention.
摘要:
The invention relates to a method for the verification of the presence and proper orientation of a component on a printed circuit board. The board has a plurality of areas for receiving a component respectively. Each area is marked in the center thereof with a first marker. Adjacent each area, and indicative of the polarity of the component, a second marker is marked on the board. The presence or absence of a component can be evaluated by inspecting the board after it has been populated and determining whether any of the first markers appear, indicating that a component is missing. Verification of the polarity of a component is done by placing a marker on a portion of a component required to be installed in a predetermined position indicative of polarity. Inspection of the board once it has been populated will determine if the component is in the proper orientation by verifying if the second marker and the marker on the component are in alignment. Preferably, the first marker and the second marker are of different colors, and are preferably UV reflecting coatings.
摘要:
The present invention further relates to the selection of the specific filter combinations, which can provide sufficient information for multivariate calibration to extract accurate analyte concentrations in complex biological systems. The present invention also describes wavelength interval selection methods that give rise to the miniaturized designs. Finally, this invention presents a plurality of wavelength selection methods and miniaturized spectroscopic apparatus designs and the necessary tools to map from one domain (wavelength selection) to the other (design parameters). Such selection of informative spectral bands has a broad scope in miniaturizing any clinical diagnostic instruments which employ Raman spectroscopy in particular and other spectroscopic techniques in general.