摘要:
An aging monitor circuit that provides a more accurate estimate of aging and/or delay in a circuit and/or circuit path. The aging monitor circuit employs a separate aging path with driving and receiving flip flops (FFs) and a tunable replica circuit (TRC) to enable measurements of single-transition DC-stressed path delay that only propagates through stressed transistors or other circuit element(s). A finite state machine (FSM) in the aging monitor circuit is configured to adjust a frequency of a clock signal output by a digitally controlled oscillator (DCO) in response to an error signal output by the receiving FF. The error signal is generated in response to single-transition DC-stressed path delay; and therefore enables the adjustment of the frequency of the dock signal to correspond to an amount or effect of the delay.
摘要:
An aging monitor circuit that provides a more accurate estimate of aging and/or delay in a circuit and/or circuit path. The aging monitor circuit employs a separate aging path with driving and receiving flip flops (FFs) and a tunable replica circuit (TRC) to enable measurements of single-transition DC-stressed path delay that only propagates through stressed transistors or other circuit element(s). A finite state machine (FSM) in the aging monitor circuit is configured to adjust a frequency of a clock signal output by a digitally controlled oscillator (DCO) in response to an error signal output by the receiving FF. The error signal is generated in response to single transition DC-stressed path delay, and therefore enables the adjustment of the frequency of the clock signal to correspond to an amount or effect of the delay.
摘要:
The disclosed system and method detect and correct register file read path errors that may occur as a result of reducing or eliminating supply voltage guardbands and/or frequency guardbands for a CPU, thereby increasing overall energy efficiency of the system.
摘要:
Sequential circuits with error-detection are provided. They may, for example, be used to replace traditional master-slave flip-flops, e.g., in critical path circuits to detect and initiate correction of late transitions at the input of the sequential. In some embodiments, such sequentials may comprise a transition detector with a time borrowing latch.
摘要:
The disclosed system and method detect and correct register file read path errors that may occur as a result of reducing or eliminating supply voltage guardbands and/or frequency guardbands for a CPU, thereby increasing overall energy efficiency of the system.
摘要:
Sequential circuits with error-detection are provided. They may, for example, be used to replace traditional master-slave flip-flops, e.g., in critical path circuits to detect and initiate correction of late transitions at the input of the sequential. In some embodiments, such sequentials may comprise a transition detector with a time borrowing latch.
摘要:
Some embodiments provide sampling of a data signal output from a path stage using a latch, sampling of the data signal output from the path stage using an edge-triggered flip-flop, comparing a first value output by the latch with a second value output by the edge-triggered flip-flop, and generating an error signal if the first value is different from the second value.
摘要:
Some embodiments provide sampling of a data signal output from a path stage using a latch, sampling of the data signal output from the path stage using an edge-triggered flip-flop, comparing a first value output by the latch with a second value output by the edge-triggered flip-flop, and generating an error signal if the first value is different from the second value.
摘要:
Methods of enabling voice processing with minimal power consumption includes recording time-domain audio signal at a first clock frequency and a first voltage, and performing Fast Fourier Transform (FFT) operations on the time-domain audio signal at a second clock frequency to generate frequency-domain audio signal. The frequency domain audio signal may be enhanced to obtain better signal to noise ratio, through one or multiple filtering and enhancing techniques. The enhanced audio signal may be used to generate the total signal energy and estimate the background noise energy. Decision logic may determine from the signal energy and the background noise, the presence or absence of the human voice. The first clock frequency may be different from the second clock frequency.
摘要:
Methods of enabling voice processing with minimal power consumption includes recording time-domain audio signal at a first clock frequency and a first voltage, and performing Fast Fourier Transform (FFT) operations on the time-domain audio signal at a second clock frequency to generate frequency-domain audio signal. The frequency domain audio signal may be enhanced to obtain better signal to noise ratio, through one or multiple filtering and enhancing techniques. The enhanced audio signal may be used to generate the total signal energy and estimate the background noise energy. Decision logic may determine from the signal energy and the background noise, the presence or absence of the human voice. The first clock frequency may be different from the second clock frequency.