摘要:
A conductor for interconnecting integrated circuit components having improved reliability. The conductor includes a liner surrounding at least three surfaces of the conductor, producing a low textured conductor. It has been found that low textured conductor results in improved electromigration lifetime.
摘要:
A method of enriching the surface of a substrate with a solute material that was originally dissolved in the substrate material, to yield a uniform dispersion of the solute material at the substrate surface. The method generally entails the use of a solvent material that is more reactive than the solute material to a chosen reactive agent. The surface of the substrate is reacted with the reactive agent to preferentially form a reaction compound of the solvent material at the surface of the substrate. As the compound layer develops, the solute material segregates or diffuses out of the compound layer and into the underlying substrate, such that the region of the substrate nearest the compound layer becomes enriched with the solute material. At least a portion of the compound layer is then removed without removing the underlying enriched region of the substrate. For microcircuit applications, the method can be used to enrich the surface of an aluminum line with elemental copper to improve the electromigration resistance of the line.
摘要:
The present invention relates generally to a method of enclosing a via in a dual damascene process. In one embodiment of the disclosed method, the via is etched first and a first barrier metal or liner is deposited in the via, the trench is then etched and a second barrier metal or liner is deposited in the trench, and finally the via and trench are filled or metallized in a dual damascene process, thereby forming a via or interconnect and a line. Alternatively, the trench may be etched first and a first barrier metal or liner deposited in the trench, then the via is etched and a second barrier metal or liner is deposited in the via, and finally the trench and via are filled or metallized in a dual damascene process. The barrier metal or liner encloses the via, thereby reducing void formation due to electromigration.
摘要:
Disclosed are a damascene and dual damascene processes both of which incorporate the use of a release layer to remove trace amounts of residual material between metal interconnect lines. The release layer is deposited onto a dielectric layer. The release layer comprises an organic material, a dielectric material, a metal or a metal nitride. Trenches are etched into the dielectric layer. The trenches are lined with a liner and filled with a conductor. The conductor and liner materials are polished off the release layer. However, trace amounts of the residual material may remain. The release layer is removed (e.g., by an appropriate solvent or wet etching process) to remove the residual material. If the trench is formed such that the release layer overlaps the walls of the trench, then when the release layer is removed another dielectric layer can be deposited that reinforces the corners around the top of the metal interconnect line.
摘要:
Methods of forming a gas dielectric structure for a semiconductor structure by using a sacrificial layer. In particular, one embodiment of the invention includes forming an opening for semiconductor structure in a dielectric layer on a substrate; depositing a sacrificial layer over the opening; performing a directional etch on the sacrificial layer to form a sacrificial layer sidewall on the opening; depositing a conductive liner over the opening; depositing a metal in the opening; planarizing the metal and the conductive liner; removing the sacrificial layer sidewall to form a void; and depositing a cap layer over the void to form the gas dielectric structure. The invention is easily implemented in damascene wire formation processes, and improves structural stability.
摘要:
In the back end of an integrated circuit employing dual-damascene interconnects, the interconnect members have a first non-conformal liner that has a thicker portion at the top of the trench level of the interconnect; and a conformal second liner that combines with the first liner to block diffusion of the metal fill material.
摘要:
A method and structure for the detection of residual liner materials after polishing in a damascene processes includes an integrated circuit comprising a substrate; a dielectric layer over the substrate; a marker layer over the dielectric layer; a liner over the marker layer and dielectric layer; and a metal layer over the liner, wherein the marker layer comprises ultraviolet detectable material, which upon excitation by an ultraviolet ray signals an absence of the metal layer and the liner over the marker layer. Moreover, the marker layer comprises a separate layer from the dielectric layer. Additionally, the ultraviolet detectable material comprises fluorescent material or phosphorescent material.
摘要:
Disclosed are a damascene and dual damascene processes both of which incorporate the use of a release layer to remove trace amounts of residual material between metal interconnect lines. The release layer is deposited onto a dielectric layer. The release layer comprises an organic material, a dielectric material, a metal or a metal nitride. Trenches are etched into the dielectric layer. The trenches are lined with a liner and filled with a conductor. The conductor and liner materials are polished off the release layer. However, trace amounts of the residual material may remain. The release layer is removed (e.g., by an appropriate solvent or wet etching process) to remove the residual material. If the trench is formed such that the release layer overlaps the walls of the trench, then when the release layer is removed another dielectric layer can be deposited that reinforces the corners around the top of the metal interconnect line.
摘要:
Improved methods for forming metal-filled structures in openings on substrates for integrated circuit devices are obtained by the formation of a discontinuous metal liner by CVD in an opening to be filled. The discontinuous metal liner surprisingly provides wetting equivalent to or better than continuous layer CVD liners. The CVD step is followed by depositing a further amount of metal by physical vapor deposition over the discontinuous layer in the opening, and reflowing the further amount of metal to obtain the metal-filled structure.The interior surface of the opening is preferably a conductive material such as titanium nitride. Preferably, the discontinuous metal layer is made of aluminum. The metal deposited by PVD is preferably aluminum or an aluminum alloy. The methods of the invention are especially useful for the filling of contact holes, damascene trenches and dual damascene trenches. The methods of the invention are especially useful for filling structures having an opening width less than 250 nm.
摘要:
High aspect ratio vias formed in a first insulating layer covering a semiconductor substrate (body) are filled with conductors in a manner that both reduces the number of processing steps and allows an alignment tool (stepper) to align to alignment and overlay marks. Sidewalls and a bottom of each via are coated with a composite layer of titanium, titanium nitride, and a chemical vapor deposited seed layer of aluminum. A physical vapor deposited layer of aluminum is then formed while the structure is heated to about 400 degrees C. to completly fill the vias and to overfill same to form a blanket layer of aluminum above the first insulating layer (34). The blanket layer of aluminum is then patterned and portions not covered by the pattern are removed to result in columns of aluminum. A second insulating layer is then formed around the columns of aluminum. The ends of the columns at a top of the second insulating layer lie in a relatively common plane to which steppers can relatively easily align patterns.