Abstract:
A semiconductor element and a manufacturing method of the same are provided. The semiconductor element includes a substrate, a plurality of doping strips, a memory material layer, a plurality of conductive damascene structures, and a dielectric structure. The doping strips are formed in the substrate. The memory material layer is formed on the substrate, and the memory material layer comprises a memory area located on two sides of the doping strips. The conductive damascene structures are formed on the memory material layer. The dielectric structure is formed on the doping strips and between the conductive damascene structures. The conductive damascene structures are extended in a direction perpendicular to a direction which the doping strips are extended in.
Abstract:
A memory structure includes a memory cell, and the memory cell includes following elements. A first gate is disposed on a substrate. A stacked structure includes a first dielectric structure, a channel layer, a second dielectric structure and a second gate disposed on the first gate, a first charge storage structure disposed in the first dielectric structure and a second charge storage structure disposed in the second dielectric structure. The first charge storage structure is a singular charge storage unit and the second charge storage structure comprises two charge storage units which are physically separated. A channel output line physically connected to the channel layer. A first dielectric layer is disposed on the first gate at two sides of the stacked structure. A first source or drain and a second source or drain are disposed on the first dielectric layer and located at two sides of the channel layer.
Abstract:
A memory structure includes a memory cell, and the memory cell includes following elements. A first gate is disposed on a substrate. A stacked structure includes a first dielectric structure, a channel layer, a second dielectric structure and a second gate disposed on the first gate, a first charge storage structure disposed in the first dielectric structure and a second charge storage structure disposed in the second dielectric structure. The first charge storage structure is a singular charge storage unit and the second charge storage structure comprises two charge storage units which are physically separated. A channel output line physically connected to the channel layer. A first dielectric layer is disposed on the first gate at two sides of the stacked structure. A first source or drain and a second source or drain are disposed on the first dielectric layer and located at two sides of the channel layer.
Abstract:
A memory structure includes a memory cell, and the memory cell includes following elements. A first gate is disposed on a substrate. A stacked structure includes a first dielectric structure, a channel layer, a second dielectric structure and a second gate disposed on the first gate, a first charge storage structure disposed in the first dielectric structure and a second charge storage structure disposed in the second dielectric structure. The first charge storage structure is a singular charge storage unit and the second charge storage structure comprises two charge storage units which are physically separated. A channel output line physically connected to the channel layer. A first dielectric layer is disposed on the first gate at two sides of the stacked structure. A first source or drain and a second source or drain are disposed on the first dielectric layer and located at two sides of the channel layer.
Abstract:
A memory structure includes a memory cell, and the memory cell includes following elements. A first gate is disposed on a substrate. A stacked structure includes a first dielectric structure, a channel layer, a second dielectric structure and a second gate disposed on the first gate, a first charge storage structure disposed in the first dielectric structure and a second charge storage structure disposed in the second dielectric structure. The first charge storage structure is a singular charge storage unit and the second charge storage structure comprises two charge storage units which are physically separated. A channel output line physically connected to the channel layer. A first dielectric layer is disposed on the first gate at two sides of the stacked structure. A first source or drain and a second source or drain are disposed on the first dielectric layer and located at two sides of the channel layer.
Abstract:
A memory device includes a plurality of memory cells arranged in series in the semiconductor body, such as a NAND string, having a plurality of word lines. A selected memory cell is programmed by hot carrier injection using a boosted channel potential to establish the heating field. Boosted channel hot carrier injection can be based on blocking flow of carriers between a first side of a selected cell and a second side of the selected cell in the NAND string, boosting by capacitive coupling the first semiconductor body region to a boosted voltage level, biasing the second semiconductor body region to a reference voltage level, applying a program potential greater than a hot carrier injection barrier level to the selected cell and enabling flow of carriers from the second semiconductor body region to the selected cell to cause generation of hot carriers.
Abstract:
An integrated circuit comprises a memory array including diffusion bit lines having composite impurity profiles in a substrate. A plurality of word lines overlies channel regions in the substrate between the diffusion bit lines, with data storage structures such as floating gate structures or dielectric charge trapping structures, at the cross-points. The composite impurity diffusion bit lines provide source/drain terminals on opposing sides of the channel regions that have high conductivity, good depth and steep doping profiles, even with channel region critical dimensions below 50 nanometers.
Abstract:
A memory device includes a memory array having a plurality of rows and columns of array blocks disposed in array block areas, array blocks including sub-arrays of memory cells arranged in rows and columns with word lines disposed in a patterned gate layer along the rows and one or more patterned conductor layers including bit lines disposed along the columns. A plurality of sets of local word line drivers is arranged in rows and columns disposed adjacent to corresponding array blocks. A set of global word line drivers driving global word lines disposed in an overlying patterned conductor layer over the one or more patterned conductor layers in the array blocks.
Abstract:
A semiconductor element and a manufacturing method of the same are provided. The semiconductor element includes a substrate, a plurality of doping strips, a memory material layer, a plurality of conductive damascene structures, and a dielectric structure. The doping strips are formed in the substrate. The memory material layer is formed on the substrate, and the memory material layer comprises a memory area located on two sides of the doping strips. The conductive damascene structures are formed on the memory material layer. The dielectric structure is formed on the doping strips and between the conductive damascene structures. The conductive damascene structures are extended in a direction perpendicular to a direction which the doping strips are extended in.