摘要:
An electric power conversion device comprises a conversion circuit having bi-directionally switchable plural pairs of switching elements connected to respective phases and converting an inputted AC power into an AC electric power. A first switching time is calculated using detected voltages detected by voltage sensors and an output command value. A second switching time is calculated in a form of a time which is a subtraction of the first switching time from a half period of a carrier and, using this time, control signals to switch on and off of the switching elements are generated.
摘要:
An electric power conversion device comprises a conversion circuit having bi-directionally switchable plural pairs of switching elements connected to respective phases and converting an inputted AC power into an AC electric power. A first switching time is calculated using detected voltages detected by voltage sensors and an output command value. A second switching time is calculated using a carrier and the calculated first switching time. The second switching time is such that, in one period of the alternating current electric power outputted from the conversion circuit, the second switching time included in a first half period of the one period is equal to the second switching time included in a second half period of the one period.
摘要:
A power supply device is provided that includes a battery module (3) and a cooling mechanism. The battery module is composed of a plurality of batteries (20) arranged side by side. The cooling mechanism cools the batteries (20). A thermally-insulating member (70) is arranged on a part of a battery module surface, and thermally insulates heat generated from the batteries. This power supply device can reduce the temperature unevenness ΔT.
摘要:
A semiconductor device includes: a first output unit configured to output a first phase; a second output unit configured to output a second phase different from the first phase, the second output unit being disposed to be stacked on the first output unit; and a controller configured to control the output units.
摘要:
An insulating adhesive film and an anisotropically electroconductive adhesive film satisfying low-temperature curability, high adhesion and high reliability are provided. An anisotropically electroconductive adhesive film of the present invention is so configured that electroconductive particles 7 are dispersed in an insulating adhesive resin 6, comprising as main components: a radical polymerizable resin component having an unsaturated double bond; a resin component having no unsaturated double bond; a phosphoric acid-containing resin component; and a radical polymerization initiator.
摘要:
A semiconductor device according to the present invention includes: an insulating substrate; a metal bonding member being disposed on the insulating substrate and having a porous region and a metal region, the porous region being provided with multiple pores therein and being adjacent to the metal region in a plane direction of the insulating substrate; a solder material impregnated into the pores; a semiconductor element disposed on the surface of the porous region in the metal bonding member; a bonding wire connected to the surface of the metal region in the metal bonding member. This makes it possible to provide a semiconductor device having improved electrical conductivity and thermal conductivity, and enabling the weight reduction.
摘要:
In an electron tube including vibration absorbers for linear members such as filaments, a vibration absorbing means that is made of a vibration absorber with a large vibration absorption effect, has a simple configuration, and is attachable easily to filaments is provided. The vibration absorbing means is formed of a holder 231, a vibration absorber 241, and a getter shielding member 251. These three members are attached to a shielding electrode S overlying the front substrate 111 to dispose the vibration absorber 241 between the holder 231 and getter shielding member 251. The vibration absorber 241 is mounted to slide or rotate between the holder 231 and the getter shielding member 251. The vibration absorber 241 has an aperture 2413 in which the filament is engaged. The bottom (apex) of the aperture 2413 is formed eccentrically. The vibration absorber 241 is in line contact with the shielding electrode S, as shown in FIG. 3(c).