摘要:
A wafer supporting plate is formed of a glass or a resin which can permeate ultraviolet rays and has a nearly disk shape. An outer diameter of the wafer supporting plate is larger than that of the semiconductor wafer which is supported. In the wafer supporting plate, a plurality of openings are formed to correspond to plural through holes of the semiconductor wafer. The opening has an open area larger than an open area of the through hole, that is, has a larger diameter.
摘要:
A method for manufacturing a semiconductor device includes forming a copper anti-diffusion film on a copper trench wiring layer, and forming an opening portion in the copper anti-diffusion film by laser ablation, the opening portion being formed in a region corresponding to an alignment region used for lithography process for forming an aluminum wiring on the copper trench wiring layer.
摘要:
A semiconductor device comprises a semiconductor substrate having an through hole, a first insulation resin layer formed on an inner surface of the through hole, a second insulation resin layer formed on at least one of front and rear surfaces of the semiconductor substrate, and a first conductor layer formed in the through hole to connect at least both front and rear surfaces of the semiconductor substrate and insulated from the inner surface of the through hole with the first insulation resin layer. A second conductor layer (wiring pattern) which is electrically connected to the first conductor layer in the through hole is further provided on the second insulation resin layer. The conductor layer formed in the through hole and constituting a connecting plug has a high insulation reliability. Therefore, a semiconductor device suitable for a multi-chip package and the like can be obtained. Further, since the forming ability of the conductor layer connecting the front and rear surfaces and the insulation layer is high, the manufacturing cost can be reduced.
摘要:
A method for fabricating a semiconductor device, includes forming an opening in a first film, embedding an alignment mark material for alignment with an upper layer in the opening, forming a second film on the first film in which the alignment mark material is embedded, irradiating the second film formed in a predetermined region including a position where the alignment mark material is embedded with a processing light, thereby to remove the second film to an extent that a portion of the second film remains in the predetermined region, and exposing the portion of the second film remaining in the predetermined region to an etching environment for etching the second film.
摘要:
A method for manufacturing a semiconductor device includes forming a copper anti-diffusion film on a copper trench wiring layer, and forming an opening portion in the copper anti-diffusion film by laser aberration, the opening portion being formed in a region corresponding to an alignment region used for lithography process for forming an aluminum wiring on the copper trench wiring layer.
摘要:
According to an aspect of the present invention, there is provided a bonding method, comprising disposing on a first body a second body with a bump interposed therebetween; and electrically and mechanically bonding the first body and the second body with the bump by passing a heating element between the first body and the second body to melt the bump by the heating element, the heating element being heated to a melting point or more of a material configuring the bump.
摘要:
A semiconductor device which is compact and thin in size, low in resistance of a current path and parasitic inductance and excellent in reliability is provided. This semiconductor device comprises a semiconductor substrate, a first main electrode which is formed on a front surface of the semiconductor substrate, a second main electrode which is formed on a rear surface of the semiconductor substrate, and a conducting portion which is formed in a direction to pierce through the semiconductor substrate, wherein the second main electrode is extracted to the front surface of the semiconductor substrate via the conducting portion. And, the conducting portion is a through via which has a through hole formed through the semiconductor substrate in its thickness direction and a conductive portion which is formed in the through hole and connected to the second main electrode.
摘要:
A semiconductor device which is compact and thin in size, low in resistance of a current path and parasitic inductance and excellent in reliability is provided. This semiconductor device comprises a semiconductor substrate, a first main electrode which is formed on a front surface of the semiconductor substrate, a second main electrode which is formed on a rear surface of the semiconductor substrate, and a conducting portion which is formed in a direction to pierce through the semiconductor substrate, wherein the second main electrode is extracted to the front surface of the semiconductor substrate via the conducting portion. And, the conducting portion is a through via which has a through hole formed through the semiconductor substrate in its thickness direction and a conductive portion which is formed in the through hole and connected to the second main electrode.
摘要:
According to an aspect of the present invention, there is provided a bonding method, comprising disposing on a first body a second body with a bump interposed therebetween; and electrically and mechanically bonding the first body and the second body with the bump by passing a heating element between the first body and the second body to melt the bump by the heating element, the heating element being heated to a melting point or more of a material configuring the bump.
摘要:
An insulating film formed on a conducting layer is dry-etched so as to make a connection hole in the insulating film to expose the conducting layer. Plasma is supplied onto the exposed conducting layer to dry-clean a damage layer produced in the connection hole. A product produced in the connection hole as a result of the dry cleaning is removed by a wet process. An oxide film formed in the connection hole as a result of the wet process is etched by a chemical dry process using a gas including either NF3 or HF. A thermally decomposable reaction product produced as a result of the etching is removed by heat treatment.