摘要:
A method for forming a pattern of carbon nanotubes includes forming a pattern on a surface-treated substrate using a photolithographic process, and laminating carbon nanotubes thereon using a chemical self-assembly process so as to form the carbon nanotubes in a monolayer or multilayer structure. A monolayer or multilayer carbon nanotube pattern may be easily formed on the substrate, e.g., glass, a silicon wafer and a plastic. Accordingly, the method can be applied to form patterned carbon nanotube layers having a high conductivity, and thus will be usefully utilized in the manufacturing processes of energy storages, for example, solar cells and batteries, flat panel displays, transistors, chemical and biological sensors, semiconductor devices and the like.
摘要:
According to example embodiments, an organic passivation layer composition includes a cross-linking agent and an oligomer or a polymer including structural units represented by the following Chemical Formulae 1 and 2: In Chemical Formulae 1 and 2, each substituent is defined in the detailed description.
摘要:
According to example embodiments, an organic passivation layer composition includes a cross-linking agent and an oligomer or a polymer including structural units represented by the following Chemical Formulae 1 and 2: In Chemical Formulae 1 and 2, each substituent is defined in the detailed description.
摘要:
Disclosed herein is a functionalized metal nanoparticle, a buffer layer including the functionalized metal nanoparticle, and an electronic device including the buffer layer. The buffer layer including the functionalized metal nanoparticle according to example embodiments may improve the injection of electrons or holes and the charge mobility between layers in the electronic device, may form ohmic contacts, and may improve the selectivity between electrodes and the buffer layer at the time of forming the buffer layer on the electrodes, thereby improving the efficiency of the electronic device.
摘要:
An organic thin film transistor (OTFT) comprising a gate electrode, a gate insulating film, an organic active layer and a source/drain electrode, or a gate electrode, a gate insulating film, a source/drain electrode and an organic active layer, sequentially formed on a substrate, wherein the gate insulating film is a multi-layered insulator comprising a first layer of a high dielectric material and a second layer of an insulating organic polymer compatible with the organic active layer, the second layer being positioned directly under the organic active layer. The OTFT of the present invention shows low threshold and driving voltages, high charge mobility, and high Ion/Ioff, and it can be prepared by a wet process.
摘要:
A composition for preparing an organic insulator, the composition comprising (i) at least one organic-inorganic hybrid material; (ii) at least one organometallic compound and/or organic polymer; and (iii) at least one solvent for dissolving the above two components, so that an organic insulator using the same has a low threshold voltage and driving voltage, and high charge carrier mobility and Ion/Ioff ratio, thereby enhancing insulator characteristics. Further, the preparation of organic insulating film can be carried out by wet process, so that simplification of the process and cut of cost are achieved.
摘要:
An organic insulator composition comprising a high dielectric constant insulator dispersed in a hyperbranched polymer and an organic thin film transistor using the insulator composition. More specifically, the organic thin film transistor comprises a substrate, a gate electrode, a gate insulating layer, a source electrode, a drain electrode and an organic semiconductor layer wherein the gate insulating layer is made of the organic insulator composition. The use of the insulator composition in the formation of a gate insulating layer allows the gate insulating layer to be uniformly formed by spin coating at room temperature, as well as enables fabrication of an organic thin film transistor simultaneously satisfying the requirements of high charge carrier mobility and low threshold voltage.
摘要:
Disclosed herein is a functionalized metal nanoparticle, a buffer layer including the functionalized metal nanoparticle, and an electronic device including the buffer layer. The buffer layer including the functionalized metal nanoparticle according to example embodiments may improve the injection of electrons or holes and the charge mobility between layers in the electronic device, may form ohmic contacts, and may improve the selectivity between electrodes and the buffer layer at the time of forming the buffer layer on the electrodes, thereby improving the efficiency of the electronic device.
摘要:
Disclosed herein is a composition including a perfluoropolyether derivative, a photosensitive polymer or a copolymer thereof, and a photocuring agent, a passivation layer, organic thin film transistor, and electronic device including the same, a method of forming the passivation layer and methods of fabricating the organic thin film transistor and electronic device. The organic thin film transistor may prevent or reduce oxygen and moisture from infiltrating thereinto, and thus may prevent or reduce the degradation of the performance thereof caused by ambient air, prevent or reduce the deterioration thereof, and may more easily be formed into a pattern, thereby exhibiting characteristics suitable for use in electronics.
摘要:
Disclosed are methods of fabricating organic thin film transistors composed of a substrate, a gate electrode, a gate insulating film, metal oxide source/drain electrodes, and an organic semiconductor layer. The methods include applying a sufficient quantity of a self-assembled monolayer compound containing a live ion to the surfaces of the metal oxide electrodes to form a self-assembled monolayer. The presence of the live ion at the interface between the metal oxide electrodes and the organic semiconductor layer modifies the relative work function of these materials. Further, the presence of the self-assembled monolayer on the gate insulating film tends to reduce hysteresis. Accordingly, organic thin film transistors fabricated in accord with the example embodiments tend to exhibit improved charge mobility, improved gate insulating film properties and decreased hysteresis associated with the organic insulator.