摘要:
A chip structure comprising a semiconductor substrate, a plurality of dielectric layers, a plurality of circuit layers, a passivation layer, a metal layer and at least a bump. The semiconductor substrate has a plurality of electronic devices positioned on a surface layer of the semiconductor substrate. The dielectric layers are sequentially stacked on the semiconductor substrate and have a plurality of via holes. The circuit layers are disposed on one of the dielectric layers, wherein the circuit layers are electrically connected with each other through the via holes and are electrically connected to the electronic devices. The passivation layer is disposed over the circuit layers and the dielectric layers, wherein the passivation layer comprises an opening that exposes one of the metal layers. The metal layer is disposed over the passivation layer, wherein the metal layer comprises at least a bump pad and at least a testing pad, the bump pad electrically connecting with the testing pad. The bump is disposed on the bump pad.
摘要:
A chip structure comprising a silicon substrate, a MOS device, dielectric layers, a metallization structure, a passivation layer, a plurality of metal layers and a polymer layer. The metallization structure comprises a first circuit layer and a second circuit layer over the first circuit layer, and comprises a damascene electroplated copper. The passivation layer is over the metallization structure and dielectric layers, the passivation layer including a first opening exposing a contact point of the metallization structure. The polymer layer is disposed over the passivation layer and the first metal layer, a second opening in the polymer layer being over a second contact point of the first metal layer, the polymer layer covering a top surface and sidewall of the first metal layer. The second contact point is connected to the first contact point through the first opening, the second opening not being vertically over the first opening.
摘要:
A chip structure comprising a semiconductor substrate, a plurality of dielectric layers, a plurality of circuit layers, a passivation layer, a metal layer and at least a bump. The semiconductor substrate has a plurality of electronic devices positioned on a surface layer of the semiconductor substrate. The dielectric layers are sequentially stacked on the semiconductor substrate and have a plurality of via holes. The circuit layers are disposed on one of the dielectric layers, wherein the circuit layers are electrically connected with each other through the via holes and are electrically connected to the electronic devices. The passivation layer is disposed over the circuit layers and the dielectric layers, wherein the passivation layer comprises an opening that exposes one of the metal layers. The metal layer is disposed over the passivation layer, wherein the metal layer comprises at least a bump pad and at least a testing pad, the bump pad electrically connecting with the testing pad. The bump is disposed on the bump pad.
摘要:
A chip structure comprising a semiconductor substrate, a plurality of dielectric layers, a plurality of circuit layers, a passivation layer, a metal layer and at least a bump. The semiconductor substrate has a plurality of electronic devices positioned on a surface layer of the semiconductor substrate. The dielectric layers are sequentially stacked on the semiconductor substrate and have a plurality of via holes. The circuit layers are disposed on one of the dielectric layers, wherein the circuit layers are electrically connected with each other through the via holes and are electrically connected to the electronic devices. The passivation layer is disposed over the circuit layers and the dielectric layers, wherein the passivation layer comprises an opening that exposes one of the metal layers. The metal layer is disposed over the passivation layer, wherein the metal layer comprises at least a bump pad and at least a testing pad, the bump pad electrically connecting with the testing pad. The bump is disposed on the bump pad.
摘要:
A chip structure comprising a silicon substrate, a MOS device, dielectric layers, a metallization structure, a passivation layer, a plurality of metal layers and a polymer layer. The metallization structure comprises a first circuit layer and a second circuit layer over the first circuit layer, and comprises a damascene electroplated copper. The passivation layer is over the metallization structure and dielectric layers, the passivation layer including a first opening exposing a contact point of the metallization structure. The polymer layer is disposed over the passivation layer and the first metal layer, a second opening in the polymer layer being over a second contact point of the first metal layer, the polymer layer covering a top surface and sidewall of the first metal layer. The second contact point is connected to the first contact point through the first opening, the second opening not being vertically over the first opening.
摘要:
A chip structure comprising a semiconductor substrate, a plurality of dielectric layers, a plurality of circuit layers, a passivation layer, a metal layer and at least a bump. The semiconductor substrate has a plurality of electronic devices positioned on a surface layer of the semiconductor substrate. The dielectric layers are sequentially stacked on the semiconductor substrate and have a plurality of via holes. The circuit layers are disposed on one of the dielectric layers, wherein the circuit layers are electrically connected with each other through the via holes and are electrically connected to the electronic devices. The passivation layer is disposed over the circuit layers and the dielectric layers, wherein the passivation layer comprises an opening that exposes one of the metal layers. The metal layer is disposed over the passivation layer, wherein the metal layer comprises at least a bump pad and at least a testing pad, the bump pad electrically connecting with the testing pad. The bump is disposed on the bump pad.
摘要:
A chip structure comprising a substrate, a plurality of wire bonding pads and a plurality of solder pads is provided. Gold bumps or gold pads can be formed on the wire bonding pads while solder bumps can be formed on the solder pads concurrently. Alternatively, both wire bonding pads and solder pads can be formed of the same metal stack.
摘要:
A chip structure comprising a substrate, a plurality of wire bonding pads and a plurality of solder pads is provided. Gold bumps or gold pads can be formed on the wire bonding pads while solder bumps can be formed on the solder pads concurrently. Alternatively, both wire bonding pads and solder pads can be formed of the same metal stack.
摘要:
A counter weight flywheel includes an inner cylindrical body and an outer cylindrical body disposed between an upper faceplate and a lower faceplate. A shaft tube is positioned in the inner cylindrical body, and plural tensile bars are inserted in the inner cylindrical body, respectively having one end secured on the fixing members of the shaft tube and the other end fixed on the inner wall of the outer cylindrical body. Plural reinforcing bars and plural reserve tubes are respectively fixed between the inner and the outer cylindrical body. A counter weight area formed between the inner and the outer cylindrical body is filled up with concrete or iron sand, and the inner cylindrical body has its interior forming a hollow area. Thus, the counter weight flywheel is made by combining iron plates and concrete or iron sand.
摘要:
An energy-saving environmentally friendly generating system includes at least one starting system, a generating system, a transmission gear system, and at least one weighting system. Speed ratios of the transmission gear system are utilized, and an external power is used to start the starting system. The speed changes of large and small gears create torques for releasing energy that is multiple times of the primitive energy of the starting system. The weighting system rotates and creates a gravitational force to release multifold energy for counterbalancing the load of generating and the load of electricity consumption of the generating system. The generating system can thus be started. When the generating system reaches its rated generating speed, a portion of electricity is directly transmitted to the starting system, thereby achieving continuous operation for generating electricity.