摘要:
Soot filters for removing soot from the exhaust gas of lean-burn engines become blocked with progressive operating duration on account of the deposition of soot, and must therefore be regenerated at regular intervals. It has been found that reliable operation of the soot filter is possible only if an active regeneration is carried out from time to time by increasing the exhaust-gas temperature to the soot ignition temperature. For this purpose, an oxidation catalytic converter is usually arranged upstream of the soot filter, and the exhaust-gas temperature is increased by means of the catalytic combustion of additionally injected fuel. Here, the oxidation catalytic converter is subjected to high temperature loading and therefore ages very quickly. It has surprisingly been found that the ageing of the oxidation catalytic converter can be slowed if said oxidation catalytic converter is split into at least two separate catalytic converters and the distance between said separate catalytic converters is 2 to 30 mm.
摘要:
Soot filters for removing soot from the exhaust gas of lean-burn engines become blocked with progressive operating duration on account of the deposition of soot, and must therefore be regenerated at regular intervals. It has been found that reliable operation of the soot filter is possible only if an active regeneration is carried out from time to time by increasing the exhaust-gas temperature to the soot ignition temperature. For this purpose, an oxidation catalytic converter is usually arranged upstream of the soot filter, and the exhaust-gas temperature is increased by means of the catalytic combustion of additionally injected fuel. Here, the oxidation catalytic converter is subjected to high temperature loading and therefore ages very quickly. It has surprisingly been found that the ageing of the oxidation catalytic converter can be slowed if said oxidation catalytic converter is split into at least two separate catalytic converters and the distance between said separate catalytic converters is 2 to 30 mm.
摘要:
The present invention relates to a catalytic converter which comprises a molecular sieve and a mixed oxide, and to a method for the selective catalytic reduction of nitrogen oxides in exhaust gases of diesel engines.
摘要:
The invention relates to a catalyst for removal of nitrogen oxides from the exhaust gas of diesel engines, and to a process for reducing the level of nitrogen oxides in the exhaust gas of diesel engines. The catalyst consists of a support body of length L and of a catalytically active coating which in turn may be formed from one or more material zones. The material zones comprise selectively catalytically reductive (SCR-active) mixed oxide consisting of cerium oxide, zirconium oxide, rare earth sesquioxide and niobium oxide and optionally tungsten oxide. In addition, the material zones comprise at least one compound selected from the group consisting of barium oxide, barium hydroxide, barium carbonate, strontium oxide, strontium hydroxide, strontium carbonate, praseodymium oxide, lanthanum oxide, magnesium oxide, mixed magnesium/aluminum oxide, alkali metal oxide, alkali metal hydroxide, alkali metal carbonate and mixtures thereof. Noble metal may optionally also be present in the catalyst.
摘要:
The invention proposes a method for the purification of exhaust gases which are generated by a diesel engine with a charging turbine, and a special device for carrying out said method. The device comprises, in the flow direction of the exhaust gas, a dosing device for a reducing agent from a reducing agent reservoir (2), an SCR catalytic converter (3), an oxidation catalytic converter (4) and a diesel particle filter (5). The system is particularly suitable for the purification of the exhaust gases of diesel vehicles in which engines with a turbocharger (charging turbine (1)) and an exhaust-gas recirculation device are used, which engines generate exhaust gases which, in addition to carbon monoxide, hydrocarbons and particles, have nitrogen oxides with an NO2/NOX ratio of between 0.3 and 0.7.
摘要:
The present invention relates to a method of removing nitrogen oxides from the exhaust gas of a lean-burn internal combustion engine by selective catalytic reduction (SCR) using ammonia. The exhaust gas is routed first over a platinum-containing pre-catalyst and then over an SCR catalyst. The ammonia needed for the selective catalytic reduction is added to the exhaust gas upstream of the pre-catalyst at an exhaust-gas temperature below 250° C., while it is supplied to the exhaust gas between the pre-catalyst and the SCR catalyst at an exhaust gas temperature above 150° C. By adopting this procedure, a very large temperature range for the selective catalytic reduction with high nitrogen conversion rates is obtained.
摘要:
The invention proposes a method for the purification of exhaust gases which are generated by a diesel engine with a charging turbine, and a special device for carrying out said method. The device comprises, in the flow direction of the exhaust gas, a dosing device for a reducing agent from a reducing agent reservoir (2), an SCR catalytic converter (3), an oxidation catalytic converter (4) and a diesel particle filter (5). The system is particularly suitable for the purification of the exhaust gases of diesel vehicles in which engines with a turbocharger (charging turbine (1)) and an exhaust-gas recirculation device are used, which engines generate exhaust gases which, in addition to carbon monoxide, hydrocarbons and particles, have nitrogen oxides with an NO2/NOX ratio of between 0.3 and 0.7.
摘要:
The present invention relates to an exhaust-gas purification system for the selective catalytic reduction of nitrogen oxides. The system includes at least one catalyst having catalytically active components for the selective catalytic reduction (SCR components). An NOx storage catalyst (5) is arranged upstream of the SCR catalyst (3) in the exhaust-gas purification system. For performing the selective catalytic reduction, metering means (8) for supplying a compound decomposable into ammonia is provided between the NOx storage catalyst and the SCR catalyst (3). At low exhaust-gas temperatures, the NOx storage catalyst (5) adsorbs the nitrogen oxides contained in the exhaust gas and desorbs them only at rising exhaust-gas temperatures, so that they can afterwards be converted by the SCR catalyst (3) which is active then. This results in an altogether improved conversion rate for the nitrogen oxides.
摘要:
The present invention provides an exhaust gas treatment unit for an internal combustion engine. A first catalyst unit produces ammonia from corresponding constituents in a rich exhaust gas composition. A second catalyst unit that is located downstream of the first catalyst unit temporarily stores the ammonia produced by the first catalyst unit in the presence of a rich exhaust gas composition. In the presence of a lean exhaust gas composition, the nitrogen oxides present in the exhaust gas are subjected to a reduction reaction using the temporarily stored ammonia as reducing agent. The exhaust gas treatment unit also contains a third catalyst unit that is located between the other two catalyst units, and oxidizes the nitrogen oxides present in the exhaust gas at lean exhaust gas conditions to a such an extent that 25 to 75 vol. % of the nitrogen oxides entering the second catalyst unit consist of nitrogen dioxide.
摘要:
The invention relates to a catalyst for removal of nitrogen oxides from the exhaust gas of diesel engines, and to a process for reducing the level of nitrogen oxides in the exhaust gas of diesel engines. The catalyst consists of a support body of length L and of a catalytically active coating which in turn may be formed from one or more material zones. The material zones comprise a copper-containing zeolite or a zeolite-like compound. The materials used include chabazite, SAPO-34, ALPO-34 and zeolite β. In addition, the material zones comprise at least one compound selected from the group consisting of barium oxide, barium hydroxide, barium carbonate, strontium oxide, strontium hydroxide, strontium carbonate, praseodymium oxide, lanthanum oxide, magnesium oxide, magnesium/aluminum mixed oxide, alkali metal oxide, alkali metal hydroxide, alkali metal carbonate and mixtures thereof. Noble metal may optionally also be present in the catalyst.