Abstract:
Carrier aggregation (CA) may cause interference between operation on two or more carriers within a user equipment (UE). This interference can degrade signal quality on one or more of the carriers involved in the carrier aggregation, which may be referred to as “desensing” one or more carriers. One or more isolating buffers may be coupled at a down-conversion mixer at a point where the down-conversion mixer receives a signal from a transmission line for isolating the transmission line from other transmission lines. The isolating buffer may reduce the effect of interference between multiple transmission lines carrying different carriers during carrier aggregation (CA) operation. The isolating buffers may be used in an RF transceiver supporting both 5G sub-7 GHz and 5G mmWave wireless networks and carrier aggregation across sub-7 GHz and mmWave bands.
Abstract:
Embodiments of this disclosure may include a receiver with a reconfigurable processing path for different signal conditions. Such a receiver may reconfigure between a mixer-first configuration and an amplifier-first configuration. In the mixer-first configuration, an RF input signal is not passed through an LNA for amplification before processing the RF input signal for downconversion to baseband and eventual extraction of the information in the signal. In the amplifier-first configuration, an RF input signal is passed through an LNA for amplification before processing the RF input signal for downconversion to baseband and eventual extraction of the information in the signal. Reconfiguring the receiver between mixer-first and amplifier-first configurations may be performed based on detection of jammer signals and/or measurement of signal-to-noise ratio (SNR).
Abstract:
Carrier aggregation (CA) may cause interference between operation on two or more carriers within a user equipment (UE). This interference can degrade signal quality on one or more of the carriers involved in the carrier aggregation, which may be referred to as “desensing” one or more carriers. One or more isolating buffers may be coupled at a down-conversion mixer at a point where the down-conversion mixer receives a signal from a transmission line for isolating the transmission line from other transmission lines. The isolating buffer may reduce the effect of interference between multiple transmission lines carrying different carriers during carrier aggregation (CA) operation. The isolating buffers may be used in an RF transceiver supporting both 5G sub-7 GHz and 5G mmWave wireless networks and carrier aggregation across sub-7 GHz and mmWave bands.
Abstract:
A carrier aggregation diversity antenna module with integrated low noise amplifier banks is disclosed. In an exemplary embodiment, an apparatus includes at least one switch configured to establish a transmit signal path to transmit an uplink signal from at least one diversity antenna and to establish a receive signal path to receive downlink diversity signals from the at least one diversity antenna. The apparatus also includes band selection filters configured to filter the downlink diversity signals to generate at least three diversity band signals. The apparatus also includes a multiplexing amplifier configured to amplify the diversity band signals to generate at least three amplified diversity band signals that are output to a transceiver.
Abstract:
A circuit includes an active balun having an RF signal input and having differential signal outputs, the active balun including a first pair of transistors coupled to the RF signal input, the first pair of transistors including a first transistor of a first type and a second transistor of a second type, wherein the first type and second type are complementary; and an intermodulation distortion (IMD) sink circuit having an operational amplifier (op amp) coupled between a first node and a second node, wherein the first transistor and second transistor are coupled in series between the first node and the second node.
Abstract:
A circuit includes an active balun having an RF signal input and having differential signal outputs, the active balun including a first pair of transistors coupled to the RF signal input, the first pair of transistors including a first transistor of a first type and a second transistor of a second type, wherein the first type and second type are complementary; and an intermodulation distortion (IMD) sink circuit having an operational amplifier (op amp) coupled between a first node and a second node, wherein the first transistor and second transistor are coupled in series between the first node and the second node.
Abstract:
Aspects of a wireless apparatus for configuring a plurality of VCOs are provided. The apparatus may be a UE. The UE receives a configuration for a plurality of carriers. Each carrier corresponds to a different LO frequency. In addition, the UE determines a VCO frequency for generating each LO frequency. Further, the UE assigns each determined VCO frequency to each of a plurality of VCO modules based on a distance between the VCO modules and each of the determined VCO frequencies. The plurality of VCO modules are of a set of VCO modules including at least three VCO modules.
Abstract:
Amplifiers with multiple outputs and separate gain control per output are disclosed. In an exemplary design, an apparatus (e.g., a wireless device or an integrated circuit) may include first and second amplifier circuits. The first amplifier circuit may receive and amplify an input radio frequency (RF) signal based on a first variable gain and provide a first amplified RF signal. The second amplifier circuit may receive and amplify the input RF signal based on a second variable gain and provide a second amplified RF signal. The input RF signal may include a plurality of transmitted signals being received by the wireless device. The first variable gain may be adjustable independently of the second variable gain. Each variable gain may be set based on the received power level of at least one transmitted signal being received by the wireless device.
Abstract:
Certain aspects of the present disclosure generally relate to techniques and apparatus for operating a wireless receiver of the apparatus in a high linearity mode. An example method includes operating the apparatus in a first mode with transmission of a plurality of transmit signals. The method also includes attenuating a received signal via an attenuator while operating the apparatus in the first mode. The method further includes amplifying the attenuated signal with an amplifier while operating the apparatus in the first mode. For certain aspects, the method further involves operating the apparatus in a second mode, bypassing the attenuator while operating the apparatus in the second mode, and amplifying the received signal with the amplifier while operating the apparatus in the second mode.
Abstract:
This disclosure provides systems, methods, and devices for wireless communication that support reconfiguring degeneration components in a converged RF transceiver supporting carrier aggregation across sub-6 GHz frequency bands and mmWave frequency bands. In a first aspect, an apparatus includes an input port configured to receive a mixer input signal; a first mixer forming at least a portion of an HRM mixer and coupled to the input port; a first configurable degeneration component of a first processing path coupled between the input port and the first mixer; and a controller coupled to the first degeneration component, wherein the controller is configured to control a first aspect of a first degeneration component. Other aspects and features are also claimed and described.