Abstract:
Methods and apparatuses for improve clocking scheme to reduce power consumption are presented. The apparatus includes a host configured to communicate with a memory via a link. The host is further configured to receive a first clock from the memory; to receive, based on the first clock, data from the memory, in a first mode of a read operation; to generate a second clock, the second clock being generated independent of the first clock; and to receive, based on the second clock, data from the memory, in a second mode of the read operation.
Abstract:
A memory interface includes: a pull-up device and a pull-down device, wherein the pull-up device couples between a power rail and a data line, and wherein the pull-down device couples between the data line and ground; and a power supply configured to supply a first power supply voltage to the power rail during a terminated data transmission mode in which a receiving memory interface coupled to the data line has an active on-die termination, and wherein the power supply is further configured to supply a second power supply voltage to the power rail during an unterminated data transmission mode in which the on-die termination does not load the data line, the second power supply voltage being less than the first power supply voltage.
Abstract:
A master measure circuit is disclosed that may select from various nodes on a delay path carrying a signal. The master measure circuit measures the delay for propagation of the signal from one selected node to another selected node and controls an adjustable delay circuit in the delay path accordingly.
Abstract:
Signal timing drift in a synchronous dynamic random access memory (SDRAM) system may be compensated for by performing write signal timing training using a multi-purpose command (MPC) first-in-first-out (FIFO) write and MPC FIFO read at periodic intervals interspersed with mission-mode SDRAM traffic. The test result samples obtained from the write signal timing training may be analyzed independently of mission-mode SDRAM traffic. The mission-mode timing of the SDRAM data bit signals relative to the SDRAM write clock signal may be adjusted based on the analysis.
Abstract:
Writing to and reading from dynamic random access memory (DRAM) by a system on chip (SoC) over a multiphase multilane memory bus has power consumption optimized based on bit error rate (BER) and one or more thresholds. The bit error rate (BER) may be measured and used to control parameters to achieve optimal balance between power consumption and accuracy. The bit error rate (BER) measurement, purposely adding jitter, and checking against the thresholds is performed during normal mission-mode operation with live traffic. Error detection may cover every memory data transaction that has a block of binary data.
Abstract:
A duty cycle correction circuit includes a rising edge variable delay circuit and a falling edge variable delay circuit. The variable delay for each delay circuit depends upon an uncorrected duty cycle for an uncorrected clock signal being corrected by the duty cycle correction circuit into a corrected clock signal having a desired duty cycle.
Abstract:
Capacitor structures capable of providing both low-voltage capacitors and high-voltage capacitors are described herein. In one embodiment, a capacitor structure comprises a first electrode formed from a first metal layer, a second electrode formed from a second metal layer, and a third electrode formed from a third metal layer, wherein second and third electrodes are spaced farther apart than the first and second electrodes. The capacitor structure also comprises a first dielectric layer between the first and second electrodes, and a second dielectric layer between the second and third metal layers, wherein the second dielectric layer has a larger thickness than the first dielectric layer. The first electrode is coupled to a first power-supply rail, the third electrode is coupled to a second power-supply rail, and the second power-supply rail has a higher power-supply voltage than the first power-supply rail.
Abstract:
Capacitor structures capable of providing both low-voltage capacitors and high-voltage capacitors are described herein. In one embodiment, a capacitor structure comprises a low-voltage capacitor and a high-voltage capacitor. The low-voltage capacitor comprises a first electrode formed from a first metal layer, a second electrode formed from a second metal layer, a third electrode formed from a third metal layer, a first dielectric layer between the first and second electrodes, and a second dielectric layer between the second and third electrodes. The high-voltage capacitor comprises a fourth electrode formed from the first metal layer, a fifth electrode formed from the third metal layer, and a third dielectric layer between the fourth and fifth electrodes, wherein the third dielectric layer is thicker than either the first dielectric layer or the second dielectric layer.
Abstract:
Various aspects of an approach for routing die signals in an interior portion of a die using external interconnects are described herein. The approach provides for contacts coupled to circuits in the interior portion of the die, where the contacts are exposed to an exterior portion of the die. The external interconnects are configured to couple these contacts so that signals from the circuits in the interior portion of the die may be routed externally to the die. In various aspects of the disclosed approach, the external interconnects are protected by a packaging for the die.
Abstract:
A memory interface includes: a pull-up device and a pull-down device, wherein the pull-up device couples between a power rail and a data line, and wherein the pull-down device couples between the data line and ground; and a power supply configured to supply a first power supply voltage to the power rail during a terminated data transmission mode in which a receiving memory interface coupled to the data line has an active on-die termination, and wherein the power supply is further configured to supply a second power supply voltage to the power rail during an unterminated data transmission mode in which the on-die termination does not load the data line, the second power supply voltage being less than the first power supply voltage.