Abstract:
Industrial scale conversions of 5-hydroxymethylfurfural to commodity chemicals such as 1,2,6-hexanetriol and 1,6-hexanediol by chemocatalytic conversions using hydrogen and a heterogeneous reduction catalyst are provided. The reactions are suitable for use in continuous flow reactors. Methods of carrying out the conversions are provided, as are product and catalyst compositions.
Abstract:
Processes are disclosed for the conversion of a carbohydrate source to hexamethylenediamine (HMDA) and to intermediates useful for the production of hexamethylenediamine and other industrial chemicals. HMDA is produced by direct reduction of a furfural substrate to 1,6-hexanediol in the presence of hydrogen and a heterogeneous reduction catalyst comprising Pt or by indirect reduction of a furfural substrate to 1,6-hexanediol wherein 1,2,6-hexanetriol is produced by reduction of the furfural substrate in the presence of hydrogen and a catalyst comprising Pt and 1,2,6-hexanediol is then converted by hydrogenation in the presence of a catalyst comprising Pt to 1,6 hexanediol, each process then proceeding to the production of HMDA by known routes, such as amination of the 1,6 hexanediol. Catalysts useful for the direct and indirect production of 1,6-hexanediol are also disclosed.
Abstract:
Shaped porous carbon products and processes for preparing these products are provided. The shaped porous carbon products can be used, for example, as catalyst supports and adsorbents. Catalyst compositions including these shaped porous carbon products, processes of preparing the catalyst compositions, and various processes of using the shaped porous carbon products and catalyst compositions are also provided.
Abstract:
Disclosed are catalysts comprised of platinum and gold. The catalysts are generally useful for the selective oxidation of compositions comprised of a primary alcohol group and at least one secondary alcohol group wherein at least the primary alcohol group is converted to a carboxyl group. More particularly, the catalysts are supported catalysts including particles comprising gold and particles comprising platinum, wherein the molar ratio of platinum to gold is in the range of about 100:1 to about 1:4, the platinum is essentially present as Pt(0) and the platinum-containing particles are of a size in the range of about 2 to about 50 nm. Also disclosed are methods for the oxidative chemocatalytic conversion of carbohydrates to carboxylic acids or derivatives thereof. Additionally, methods are disclosed for the selective oxidation of glucose to glucaric acid or derivatives thereof using catalysts comprising platinum and gold. Further, methods are disclosed for the production of such catalysts.
Abstract:
Processes are disclosed for the conversion of adipic acid to 1,6-hexanediol employing a chemocatalytic reaction in which an adipic acid substrate is reacted with hydrogen in the presence of particular heterogeneous catalysts including a first metal and a second metal on a support. The adipic acid substrate includes adipic acid, mono-esters of adipic acid, di-esters of adipic acid, and salts thereof. The first metal is selected form the group of Pt, Rh and mixtures thereof and the second metal is selected from the group of Mo, W, Re and mixtures thereof.
Abstract:
The present disclosure relates generally to water concentration reduction processes within an adipic acid process. The present invention also includes process for converting a glucose-containing feed derived from a carbohydrate source to an adipic acid product wherein the process includes the steps of: converting glucose in the feed to a reaction product including a hydrodeoxygenation substrate and a first concentration of water; reducing the concentration of water in the reaction product to produce a feedstock including the hydrodeoxygenation substrate and second concentration of water, wherein the second concentration of water is less than the first concentration of water; and converting at least a portion of the hydrodeoxygenation substrate in the feedstock to an adipic acid product. Processes are also disclosed for producing hexamethylene diamine and caprolactam from the adipic acid product.
Abstract:
Processes are disclosed for the conversion of a carbohydrate source to hexamethylenediamine (HMDA) and to intermediates useful for the production of hexamethylenediamine and other industrial chemicals. HMDA is produced by direct reduction of a furfural substrate to 1,6-hexanediol in the presence of hydrogen and a heterogeneous reduction catalyst comprising Pt or by indirect reduction of a furfural substrate to 1,6-hexanediol wherein 1,2,6-hexanetriol is produced by reduction of the furfural substrate in the presence of hydrogen and a catalyst comprising Pt and 1,2,6-hexanediol is then converted by hydrogenation in the presence of a catalyst comprising Pt to 1,6 hexanediol, each process then proceeding to the production of HMDA by known routes, such as amination of the 1,6 hexanediol. Catalysts useful for the direct and indirect production of 1,6-hexanediol are also disclosed.
Abstract:
The present invention relates generally to processes for converting fructose-containing feedstocks to a product comprising 5-(hydroxymethyl)furfural (HMF) and water in the presence of water, solvent and an acid catalyst. In some embodiments, the conversion of fructose to HMF is controlled at a partial conversion endpoint characterized by a yield of HMF from fructose that does not exceed about 80 mol %. In these and other embodiments, the processes provide separation techniques for separating and recovering the product, unconverted fructose, solvent and acid catalyst to enable the effective recovery and reutilization of reaction components.
Abstract:
The present invention relates generally to processes for converting fructose-containing feedstocks to a product comprising 5-(hydroxymethyl)furfural (HMF) and water in the presence of water, solvent and an acid catalyst. In some embodiments, the conversion of fructose to HMF is controlled at a partial conversion endpoint characterized by a yield of HMF from fructose that does not exceed about 80 mol %. In these and other embodiments, the processes provide separation techniques for separating and recovering the product, unconverted fructose, solvent and acid catalyst to enable the effective recovery and reutilization of reaction components.
Abstract:
Processes are disclosed for the conversion of a carbohydrate source to hexamethylenediamine (HMDA) and to intermediates useful for the production of hexamethylenediamine and other industrial chemicals. HMDA is produced by direct reduction of a furfural substrate to 1,6-hexanediol in the presence of hydrogen and a heterogeneous reduction catalyst comprising Pt or by indirect reduction of a furfural substrate to 1,6-hexanediol wherein 1,2,6-hexanetriol is produced by reduction of the furfural substrate in the presence of hydrogen and a catalyst comprising Pt and 1,2,6-hexanediol is then converted by hydrogenation in the presence of a catalyst comprising Pt to 1,6 hexanediol, each process then proceding to the production of HMDA by known routes, such as amination of the 1,6 hexanediol. Catalysts useful for the direct and indirect production of 1,6-hexanediol are also disclosed.