摘要:
An illumination system comprises at least two light sources (101,102,103) having different emission spectra to one another; a detection circuit (131,132,133) for sensing a light intensity using at least one of the light sources as a photosensor; and driving means (161,162,163) for driving the light source in dependence on the sensed spectral distribution of light. The emission spectrum of a light source with the smallest bandgap overlaps the emission spectrum of a light source with the second-smallest bandgap. The illumination system is possible to measure the intensity of light emitted by the light source with the smallest bandgap by putting the light source with the second-smallest bandgap in detection mode. The illumination system may also sense the spectral distribution of ambient light, to allow the output from the illumination system to be adjusted in dependence on the ambient light.
摘要:
An illumination system comprises at least two light sources (101,102,103) having different emission spectra to one another; a detection circuit (131,132,133) for sensing a light intensity using at least one of the light sources as a photosensor; and driving means (161,162,163) for driving the light source in dependence on the sensed spectral distribution of light. The emission spectrum of a light source with the smallest bandgap overlaps the emission spectrum of a light source with the second-smallest bandgap. The illumination system is possible to measure the intensity of light emitted by the light source with the smallest bandgap by putting the light source with the second-smallest bandgap in detection mode. The illumination system may also sense the spectral distribution of ambient light, to allow the output from the illumination system to be adjusted in dependence on the ambient light.
摘要:
A semiconductor device comprises an active region (4), a cladding layer (5,7), and a saturable absorbing layer (6) disposed within the cladding layer. The saturable absorbing layer comprises at least one portion (11a) that is absorbing for light emitted by the active region and comprises at least portion (11b) that is not absorbing for light emitted by the active region.The fabrication method of the invention enables the non-absorbing portion(s) (11b) of the saturable absorbing layer (6) to produced after the device structure has been fabricated. This allows the degree of overlap between the non-absorbing portion(s) (11b) of the saturable absorbing layer (6) and the optical mode of the laser to be altered after the device has been grown.
摘要:
A semiconductor device comprises an active region (4), a cladding layer (5,7), and a saturable absorbing layer (6) disposed within the cladding layer. The saturable absorbing layer comprises at least one portion (11a) that is absorbing for light emitted by the active region and comprises at least portion (11b) that is not absorbing for light emitted by the active region. The fabrication method of the invention enables the non-absorbing portion(s) (11b) of the saturable absorbing layer (6) to produced after the device structure has been fabricated. This allows the degree of overlap between the non-absorbing portion(s) (11b) of the saturable absorbing layer (6) and the optical mode of the laser to be altered after the device has been grown.
摘要:
A semiconductor device comprises an active region (4), a cladding layer (5,7), and a saturable absorbing layer (6) disposed within the cladding layer. The saturable absorbing layer comprises at least one portion (11a) that is absorbing for light emitted by the active region and comprises at least portion (11b) that is not absorbing for light emitted by the active region.The fabrication method of the invention enables the non-absorbing portion(s) (11b) of the saturable absorbing layer (6) to produced after the device structure has been fabricated. This allows the degree of overlap between the non-absorbing portion(s) (11b) of the saturable absorbing layer (6) and the optical mode of the laser to be altered after the device has been grown.
摘要:
A method comprises forming elongate structures (5) on a first substrate (3), such that the material composition of each elongate structure (7) varies along its length so as to define first and second physically different sections in the elongate structures. First and second physically different devices (1,2) are then defined in the elongate structures. Alternatively, the first and second physically different sections may be defined in the elongate structures after they have been fabricated. The elongate structures may be encapsulated and transferred to a second substrate (7). The invention provides an improved method for the formation of a circuit structure that requires first and second physically different devices (1,2) to be provided on a common substrate. In particular, only one transfer step is necessary.
摘要:
A method of manufacturing a nitride semiconductor structure includes disposing a semiconductor substrate in a molecular beam epitaxy reactor; growing a wetting layer comprising AlxInyGa(1−(x+y))As(0≦x+y≦1) or AlxInyGa(1−(x+y))P(0≦x+y≦1) on the substrate; in-situ annealing the wetting layer; growing a first AlGaInN layer on the wetting layer using plasma activated nitrogen as the source of nitrogen with an additional flux of phosphorous or arsenic; and growing a second AlGaInN layer on the first AlGaInN layer using ammonia as a source of nitrogen.
摘要翻译:制造氮化物半导体结构的方法包括将半导体衬底设置在分子束外延反应器中; 在衬底上生长包含Al x In y Ga(1-(x + y))As(0& nE; x + y≦̸ 1)或Al x In y Ga(1-(x + y))P(0和nlE; x + y和nlE; 1) 原位退火润湿层; 使用等离子体活化氮作为氮源,再加入磷或砷的助熔剂,在润湿层上生长第一AlGaInN层; 以及使用氨作为氮源在所述第一AlGaInN层上生长第二AlGaInN层。
摘要:
A method of growing a p-type nitride semiconductor material by molecular beam epitaxy (MBE) uses bis(cyclopentadienyl)magnesium (Cp2Mg) as the source of magnesium dopant atoms. Ammonia gas is used as the nitrogen precursor for the MBE growth process. To grow p-type GaN, for example, by the method of the invention, gallium, ammonia and Cp2Mg are supplied to an MBE growth chamber; to grow p-type AlGaN, aluminum is additionally supplied to the growth chamber. The growth process of the invention produces a p-type carrier concentration, as measured by room temperature Hall effect measurements, of up to 2 1017 cm−3, without the need for any post-growth step of activating the dopant atoms.
摘要:
A semiconductor light-emitting device fabricated in a nitride material system has an active region disposed over a substrate. The active region comprises a first aluminium-containing layer forming the lowermost layer of the active region, a second aluminium-containing layer forming the uppermost layer of the active region, and at least one InGaN quantum well layer disposed between the first aluminium-containing layer and the second aluminum-containing layer. The aluminium-containing layers provide improved carrier confinement in the active region, and so increase the output optical power of the device.
摘要:
A method of growing an AlGaN semiconductor layer structure by Molecular Beam Epitaxy comprises supplying ammonia, gallium and aluminium to a growth chamber thereby to grow a first (Al,Ga)N layer by MBE over a substrate disposed in the growth chamber. The first (Al,Ga)N layer has a non-zero aluminium mole fraction. Ammonia is supplied at a beam equivalent pressure of at least 1 10−4 mbar, gallium is supplied at a beam equivalent pressure of at least 1 10−8 mbar and aluminium is supplied at a beam equivalent pressure of at least 1 10−8 mbar during the growth step. Once the first (Al,Ga)N layer has been grown, varying the supply rate of gallium and/or aluminium enables a second (Al,Ga)N layer, having a different aluminium mole fraction from the first (Al,Ga)N layer to be grown by MBE over the first (Al,Ga)N layer. This process may be repeated to grown an (Al,Ga)N multilayer structure.