摘要:
Tools and methods for in-situ characterizing of a surface of a polishing pad are described. A characterization tool is integrated with polishing tool so that the polishing pad can be monitored in-situ. The characterization tool and the polishing pad can be rotated or moved so that any portion of the polishing pad can be tested.
摘要:
Described herein are methods and systems for forming metal interconnect layers (MILs) on engineered templates and transferring these MILs to device substrates. This “off-device” approach of forming MILs reduces the complexity and costs of the overall process, allows using semiconductor processes, and reduces the risk of damaging the device substrates. An engineered template is specially configured to release a MIL when the MIL is transferred to a device substrate. In some examples, the engineered template does not include barrier layers and/or adhesion layers. In some examples, the engineered template comprises a conductive portion to assist with selective electroplating. Furthermore, the same engineered template may be reused to form multiple MILs, having the same design. During the transfer, the engineered template and device substrate are stacked together and then separated while the MIL is transitioned from the engineered template to the device substrate.
摘要:
Systems and methods for electrochemically processing a substrate. A contact element defines a substrate contact surface positionable in contact a substrate during processing. In one embodiment, the contact element comprises a wire element. In another embodiment the contact element is a rotating member. In one embodiment, the contact element comprises a noble metal.
摘要:
Systems and methods for electrochemically processing. A contact element defines a substrate contact surface positionable in contact a substrate during processing. In one embodiment, the contact element comprises a wire element. In another embodiment the contact element is a rotating member. In one embodiment, the contact element comprises a noble metal.
摘要:
An article of manufacture and apparatus are provided for processing a substrate surface. In one aspect, an article of manufacture is provided for polishing a substrate including polishing article comprising a body having at least a partially conductive polishing surface. An electrode is disposed below the polishing surface having a dielectric material therebetween. A plurality of apertures may be formed in the polishing surface and the dielectric material to at least partially expose the electrode to the polishing surface. A membrane may be disposed between the electrode and the polishing surface that is permeable to ions and current to promote continuity between the electrode and the polishing surface.
摘要:
An article of manufacture and apparatus are provided for planarizing a substrate surface. In one aspect, an article of manufacture is provided for polishing a substrate including polishing article comprising a body having at least a partially conductive surface adapted to polish the substrate. A plurality of perforations may be formed in the polishing article for flow of material therethrough. An electrode is also exposed to the polishing surface by at least a portion of the plurality of perforations. The article of manufacture may also include a polishing surface having a plurality of grooves, wherein a portion of the plurality of grooves intersect with a portion of the plurality of perforations.
摘要:
Aspects of the invention generally provide a method and apparatus for polishing a substrate using electrochemical deposition techniques. In one aspect, an apparatus for polishing a substrate comprises a counter-electrode and a pad positioned between a substrate and the counter-electrode and a pad positioned between a substrate and the counter-electrode. A dielectric insert is positioned between the counter-electrode and the substrate. The dielectric insert has a plurality of zones, each zone permitting a separate current density between the counter-electrode and the substrate. In another embodiment, an apparatus for polishing a substrate that include a conductive layer comprises a counter-electrode to the material layer. The counter-electrode comprises a plurality of electrically isolated conductive elements. An electrical connector is separately coupled to each of the conductive elements.
摘要:
In a first aspect, a first method of drying a substrate is provided. The first method includes the steps of (1) lifting a substrate through an air/fluid interface at a first rate; (2) directing a drying vapor at the air/fluid interface during lifting of the substrate; and (3) while a portion of the substrate remains in the air/fluid interface, reducing a rate at which a remainder of the substrate is lifted through the air/fluid interface to a second rate. The drying vapor may form an angle of about 23° with the air/fluid interface and/or the second rate may be about 2.5 mm/sec.
摘要:
Polishing compositions and methods for removing conductive material and barrier layer materials from a substrate surface are provided. Generally, variable amounts of abrasive particles are used for removing conductive material and barrier layer materials. In one aspect, a process is provided including providing an polishing composition between the first electrode and the substrate, wherein the polishing composition comprises a first concentration of abrasive particles, applying a bias between the first electrode and the second electrode, providing relative motion between the substrate and the polishing article, removing conductive layer material from the substrate, introducing abrasive particles to the polishing composition to form a second concentration of abrasive particles greater than a first concentration of abrasive particles, and removing barrier layer material from the substrate. The abrasive particles may be incrementally introduced or pulsed during a polishing process.
摘要:
Described are systems and methods for optical characterization of inclusions, such as solids and liquids, in liquid samples. An inclusion characterization system may include a radiation source, a radiation detector, a sample optical cell, and a sample delivery mechanism. The radiation detector may be configured to perform time resolved measurements. The sample may be delivered to the sample optical cell by the sample delivery mechanism at a flow rate set for preserving the sample integrity (i.e., the transport rate). The inclusion characterization in the sample may be performed at flow rates set for sample analysis (i.e., the analysis rate). The analysis rate may differ from the transport rate. The rate difference may be achieved by diverting only a portion of the overall sample into the sample optical cell. Also provided are examples of disengagement of sample transport and analysis flow rates.