Abstract:
Methods and apparatuses for releasably attaching microfeature workpieces to support members are disclosed herein. In one embodiment, a method includes applying a first material to a first region on a first side of a microfeature workpiece. The method then includes releasably attaching the first side of the workpiece to a support member. The method further includes applying a second material to a second region on the first side of the workpiece. The second region includes a perimeter portion of the workpiece. The first material and/or the second material can be an adhesive. The second material is removable from the workpiece relative to the first material. In several embodiments, for example, the first material can have a first solubility in a solution and the second material can have a second solubility in the solution less than the first solubility.
Abstract:
Methods and apparatuses for releasably attaching microfeature workpieces to support members are disclosed herein. In one embodiment, a method includes applying a first material to a first region on a first side of a microfeature workpiece. The method then includes releasably attaching the first side of the workpiece to a support member. The method further includes applying a second material to a second region on the first side of the workpiece. The second region includes a perimeter portion of the workpiece. The first material and/or the second material can be an adhesive. The second material is removable from the workpiece relative to the first material. In several embodiments, for example, the first material can have a first solubility in a solution and the second material can have a second solubility in the solution less than the first solubility.
Abstract:
Microelectronic imager assemblies comprising a workpiece including a substrate and a plurality of imaging dies on and/or in the substrate. The substrate includes a front side and a back side, and the imaging dies comprise imaging sensors at the front side of the substrate and external contacts operatively coupled to the image sensors. The microelectronic imager assembly further comprises optics supports superimposed relative to the imaging dies. The optics supports can be directly on the substrate or on a cover over the substrate. Individual optics supports can have (a) an opening aligned with one of the image sensors, and (b) a bearing element at a reference distance from the image sensor. The microelectronic imager assembly can further include optical devices mounted or otherwise carried by the optics supports.
Abstract:
Microfeature workpieces, carriers, and associated methods are disclosed. In a particular embodiment, one method for processing a microfeature workpiece can include temporarily attaching the microfeature workpiece to a carrier with a releasable connector, wherein the connector is at least partially metallic. The method can further include performing a manufacturing process on the microfeature workpiece while the microfeature workpiece is attached to the carrier. The method can still further include detaching the microfeature workpiece from the carrier by debonding the connector from at least one of the microfeature workpiece and the carrier. In at least some instances, the at least partially metallic connector can withstand increased processing temperatures, and can allow a wider variety of processes to be performed on the microfeature workpiece while it is attached to the carrier.
Abstract:
Microelectronic imager assemblies comprising a workpiece including a substrate and a plurality of imaging dies on and/or in the substrate. The substrate includes a front side and a back side, and the imaging dies comprise imaging sensors at the front side of the substrate and external contacts operatively coupled to the image sensors. The microelectronic imager assembly further comprises optics supports superimposed relative to the imaging dies. The optics supports can be directly on the substrate or on a cover over the substrate. Individual optics supports can have (a) an opening aligned with one of the image sensors, and (b) a bearing element at a reference distance from the image sensor. The microelectronic imager assembly can further include optical devices mounted or otherwise carried by the optics supports.
Abstract:
Integrated circuits and methods of redistributing bondpad locations are disclosed. In one implementation, a method of redistributing a bondpad location of an integrated circuit includes providing an integrated circuit comprising an inner lead bondpad. A first insulative passivation layer is formed over the integrated circuit. A bondpad-redistribution line is formed over the first insulative passivation layer and in electrical connection with the inner lead bondpad through the first insulative passivation layer. The bondpad-redistribution line includes an outer lead bondpad area. A second insulative passivation layer is formed over the integrated circuit and the bondpad-redistribution line. The second insulative passivation layer is formed to have a sidewall outline at least a portion of which is proximate to and conforms to at least a portion of the bondpad-redistribution line. Other aspects and implementations are contemplated.
Abstract:
Systems and methods for forming apertures in microfeature workpieces are disclosed herein. In one embodiment, a method includes directing a laser beam toward a microfeature workpiece to form an aperture and sensing the laser beam pass through the microfeature workpiece in real time. The method can further include determining a number of pulses of the laser beam and/or an elapsed time to form the aperture and controlling the laser beam based on the determined number of pulses and/or the determined elapsed time to form a second aperture in the microfeature workpiece.
Abstract:
Methods for forming interconnects in blind holes and microelectronic workpieces having such interconnects are disclosed herein. One aspect of the invention is directed toward a method for manufacturing a microelectronic workpiece having microelectronic dies with integrated circuits and terminals electrically coupled to the integrated circuits. In one embodiment, the method includes forming a blind hole in the workpiece. The blind hole extends from a first exterior side of the workpiece to an intermediate depth in the workpiece. The method continues by forming a vent in the workpiece. The vent is in fluid communication with the blind hole. The method further includes constructing an electrically conductive interconnect in at least a portion of the blind hole.
Abstract:
A compliant contact structure and contactor card for operably coupling with a semiconductor device to be tested includes a substantially planar substrate with a compliant contact formed therein. The compliant contact structure includes a portion fixed within the substrate and at least another portion integral with the fixed portion, laterally unsupported within a thickness of the substrate and extending beyond a side thereof. Dual-sided compliant contact structures, methods of forming compliant contact structures, a method of testing a semiconductor device and a testing system are also disclosed.
Abstract:
A semiconductor component includes a die having a pattern of die contacts, and interconnect contacts bonded to the die contacts and encapsulated in an insulating layer. The component also includes terminal contacts formed on tip portions of the interconnect contacts. Alternately the component can include conductors and bonding pads in electrical communication with the interconnect contacts configured to redistribute the pattern of the die contacts. A method for fabricating the component includes the steps of forming the interconnect contacts on the die contacts, and forming the insulating layer on the interconnect contacts while leaving the tip portions exposed. The method also includes the step of forming the terminal contacts on the interconnect contacts, or alternately forming the conductors and bonding pads in electrical communication with the interconnect contacts and then forming the terminal contacts on the bonding pads.