摘要:
Non-volatile, resistance variable memory devices, integrated circuit elements, and methods of forming such devices are provided. According to one embodiment of a method of the invention, a memory device can be fabricated by depositing a chalcogenide material onto a first (lower) electrode, sputter depositing a thin diffusion layer of a conductive material over the chalcogenide material, diffusing metal from the diffusion layer into the chalcogenide material resulting in a metal-comprising resistance variable material, and then plating a conductive material to a desired thickness to form a second (upper) electrode. In another embodiment, the surface of the chalcogenide layer can be treated with an activating agent such as palladium, a conductive metal can be electrolessly plated onto the activated areas to form a thin diffusion layer, metal ions from the diffusion layer can be diffused into the chalogenide material to form a resistance variable material, and a conductive material plated over the resistance variable material to form the upper electrode. The invention provides a process for controlling the diffusion of metal into the chalcogenide material to form a resistance variable material by depositing the mass of the upper electrode by a metal plating technique.
摘要:
An electroless plating composition comprising succinic acid, potassium carbonate, a source of cobalt metal ions, a reducing agent, and water is provided. An optional buffering agent may also be included in the composition. The composition may be used to deposit cobalt metal in or on semiconductor substrate surfaces including vias, trenches, and interconnects.
摘要:
The invention includes methods of forming pluralities of electrically conductive structures. The methods can include formation of a gradient-containing material across a substrate and in direct physical contact with conductive surfaces of nodes. The gradient-containing material can consist essentially of tantalum nitride at a lowermost portion in contact with the conductive surfaces, consist essentially of tantalum at an uppermost portion, and have a TaN/Ta gradient extending between the lowermost and uppermost portions. Alternatively, the gradient-containing material can have a Co/W gradient extending therethrough. Conductive structures can be formed over the gradient-containing material. The invention also includes constructions comprising electrically conductive lines over a material having a TaN/Ta gradient, or a W/Co gradient, extending therethrough.
摘要:
The invention includes methods of electrochemically treating semiconductor substrates. The invention includes a method of electroplating a substance. A substrate having defined first and second regions is provided. The first and second regions can be defined by a single mask, and accordingly can be considered to be self-aligned relative to one another. A first electrically conductive material is formed over the first region, and a second electrically conductive material is formed over the second region. The first and second electrically conductive materials are exposed to an electrolytic solution while providing electrical current to the first and second electrically conductive materials. A desired substance is selectively electroplated onto the first electrically conductive material during the exposing of the first and second electrically conductive materials to the electrolytic solution. The invention also includes methods of forming capacitor constructions.
摘要:
A planarization method includes providing a second and/or third row Group VIII metal-containing surface (preferably, a platinum-containing surface) and positioning it for contact with a polishing surface in the presence of a planarization composition that includes a complexing agent.
摘要:
The invention includes methods of electrochemically treating semiconductor substrates. The invention includes a method of electroplating a substance. A substrate having defined first and second regions is provided. The first and second regions can be defined by a single mask, and accordingly can be considered to be self-aligned relative to one another. A first electrically conductive material is formed over the first region, and a second electrically conductive material is formed over the second region. The first and second electrically conductive materials are exposed to an electrolytic solution while providing electrical current to the first and second electrically conductive materials. A desired substance is selectively electroplated onto the first electrically conductive material during the exposing of the first and second electrically conductive materials to the electrolytic solution. The invention also includes methods of forming capacitor constructions.
摘要:
A method for planarizing a microelectronic substrate. In one embodiment, the microelectronic substrate includes an insulating portion having at least one aperture that is empty or at least partially filled with a sacrificial material. The method can include pressing a planarizing medium having small abrasive elements against the microelectronic substrate and moving at least one of the microelectronic substrate and the planarizing medium relative to the other to remove material from the microelectronic substrate. In one aspect of the invention, the abrasive elements can include flumed silica particles having a mean cross-sectional dimension of less than about 200 nanometers and/or colloidal particles having a mean cross-sectional dimension of less than about fifty nanometers. The smaller abrasive elements can reduce formation of cracks or other defects in the insulating material during planarization to improve the reliability and performance of the microelectronic device.
摘要:
A method for planarizing a microelectronic substrate. In one embodiment, the microelectronic substrate includes an insulating portion having at least one aperture that is empty or at least partially filled with a sacrificial material. The method can include pressing a planarizing medium having small abrasive elements against the microelectronic substrate and moving at least one of the microelectronic substrate and the planarizing medium relative to the other to remove material from the microelectronic substrate. In one aspect of the invention, the abrasive elements can include fumed silica particles having a mean cross-sectional dimension of less than about 200 nanometers and/or colloidal particles having a mean cross-sectional dimension of less than about fifty nanometers. The smaller abrasive elements can reduce the formation of cracks or other defects in the insulating material during planarization to improve the reliability and performance of the microelectronic device.
摘要:
Various embodiments comprise methods of selectively etching oxides over nitrides in a vapor-etch cyclic process. In one embodiment, the method includes, in a first portion of the vapor-etch cyclic process, exposing a substrate having oxide features and nitride features formed thereon to selected etchants in a vapor-phase chamber; transferring the substrate to a post-etch heat treatment chamber; and heating the substrate to remove etchant reaction products from the substrate. In a second portion of the vapor-etch cyclic process, the method continues with transferring the substrate from the post-etch heat treatment chamber to the vapor-phase chamber; exposing the substrate to the selected etchants in the vapor-phase chamber; transferring the substrate to the post-etch heat treatment chamber; and heating the substrate to remove additional etchant reaction products from the substrate. Apparatuses for performing the method and additional methods are also disclosed.
摘要:
An electrolyte solution, methods, and systems for selectively removing a conductive metal from a substrate are provided. The electrolyte solution comprising nanoparticles that are more noble than the conductive metal being removed, is applied to a substrate to remove the conductive metal selectively relative to a dielectric material without application of an external potential or contact of a processing pad with a surface of the substrate. The solutions and methods can be applied, for example, to remove a conductive metal layer (e.g., barrier metal) selectively relative to a dielectric material and to a materially different conductive metal (e.g., copper interconnect) without application of an external potential or contact of a processing pad with the surface of the substrate.