摘要:
A differentiable ablation approach to patterning dielectrics which are not of the same absorbance uses an absorbant dielectric at a specified laser wavelength over a non-absorbant dielectric at that wavelength. The absorbant dielectric may be laser-patterned and become an integral mask enabling plasma etching of the underlying non-absorbant dielectric. If the patterning of the absorbant dielectric involves vias, polymer ridges formed around via surfaces during laser patterning may be removed at the same time the underlying non-absorbant dielectric is etched using a transparent, oxygen plasma resistant mask. Alternatively, an inert mask may be used instead of the absorbant dielectric to allow plasma etching of the non-absorbant dielectric.
摘要:
A microvalve and a method of forming a diaphragm stop for a microvalve. The microvalve includes a first layer and a diaphragm member to control the flow of fluid through the microvalve. The method comprises the step of forming a contoured shaped recess extending inward from a surface of the layer by using a laser to remove material in a series of areas, at successively greater depths extending inward from said surface. Preferably, the recess has a dome shape, and may be formed by a direct-write laser operated via a computer aided drawing program running on a computer. For example, CAD artwork files, comprising a set of concentric polygons approximating circles, may be generated to create the dome structure. The laser ablation depth can be controlled by modifying the offset step distance of the polygons and equating certain line widths to an equivalent laser tool definition. Preferably, the laser tool definition is combined with the CAD artwork, which defines a laser path such that the resulting geometry has no sharp edges that could cause the diaphragm of the valve to tear or rupture.
摘要:
A microvalve and a method of forming a diaphragm stop for a microvalve. The microvalve includes a first layer and a diaphragm member to control the flow of fluid through the microvalve. The method comprises the step of forming a contoured shaped recess extending inward from a surface of the layer by using a laser to remove material in a series of areas, at successively greater depths extending inward from said surface. Preferably, the recess has a dome shape, and may be formed by a direct-write laser operated via a computer aided drawing program running on a computer. For example, CAD artwork files, comprising a set of concentric polygons approximating circles, may be generated to create the dome structure. The laser ablation depth can be controlled by modifying the offset step distance of the polygons and equating certain line widths to an equivalent laser tool definition. Preferably, the laser tool definition is combined with the CAD artwork, which defines a laser path such that the resulting geometry has no sharp edges that could cause the diaphragm of the valve to tear or rupture.
摘要:
A lamp comprising a light-transmissive envelope, the inner surface of which is only partially coated by a reflective barrier coating layer such that an aperture is created in the coating for light emission, the lamp exhibiting asymmetric light output through the aperture and lumens substantially equivalent to a lamp wherein the envelope inner surface is completely coated with a reflective barrier coating layer having no aperture, and a laser ablation process for creating the reflective barrier coating layer aperture.
摘要:
A method for fabricating a metal interconnection pattern for an integrated circuit module is provided comprising the steps of: aligning only one face of the module, forming a metal layer on at least one other face of the module, applying a coating of photoresist to the metal layer, exposing predetermined portions of the photoresist to reflected radiation, and shaping the metal layer in accordance with the exposed photoresist portions.
摘要:
In order to solve the problem of the proximity effects which occurs in the fabrication of integrated circuit devices, a facile method is provided for automatically creating a new pattern in which variably spaced windage correction is applied over the mask. This permits the utilization of conventional design fabrication rules and systems without the concomitant problem of producing small feature sizes in isolated structures. The method produces highly desirable chip masks and is readily implemented on commercially available CAD systems presently being employed for the production of circuit masks. The method is automatic and extremely easily implemented.