Abstract:
A semiconductor substrate structure includes: a substrate; and an epitaxial growth layer bonded to the substrate, wherein the substrate and the epitaxial growth layer are bonded by a room-temperature bonding or a diffusion bonding.
Abstract:
Systems and methods for growth of silicon carbide over a layer comprising graphene and/or hexagonal boron nitride, and related articles, are generally described. In some embodiments, a SiC film is fabricated over a layer comprising graphene and/or hexagonal boron nitride, which in turn is disposed over a substrate. The layer and/or the substrate may be lattice-matched with the SiC film to reduce defect density in the SiC film. The fabricated SiC film may then be removed from the substrate via, for example, a stressor attached to the SiC film. In certain cases, the layer serves as a reusable platform for growing SiC films and also serves a release layer that allows fast, precise, and repeatable release at the layer surface.
Abstract:
A target is irradiated in a time-shared manner with a visible-light-range illumination light source and an infrared laser beam for Raman scattering, and a target image is formed with an image-capturing lens on a CIGS image sensor provided with a visible-light-range filter, a narrow-band infrared filter for Raman-scattered light measurement, and a near-band reference narrow-band infrared filter that does not let Raman-scattered light pass through. In a preliminary measurement, a plurality of normal sections are measured and averaged, and by using the same as a reference, an actual measurement of Raman scattering is performed. In displaying a visible-light image with the CIGS image sensor, superimposed display is performed to specify sections where Raman scattering is detected, and superimposed display positions are corrected in association with focusing and zooming. The displaying of the visible-light image is continued even during the detection of Raman scattering.
Abstract:
Systems and methods for growth of silicon carbide over a layer comprising graphene and/or hexagonal boron nitride, and related articles, are generally described. In some embodiments, a SiC film is fabricated over a layer comprising graphene and/or hexagonal boron nitride, which in turn is disposed over a substrate. The layer and/or the substrate may be lattice-matched with the SiC film to reduce defect density in the SiC film. The fabricated SiC film may then be removed from the substrate via, for example, a stressor attached to the SiC film. In certain cases, the layer serves as a reusable platform for growing SiC films and also serves a release layer that allows fast, precise, and repeatable release at the layer surface.
Abstract:
A target is irradiated in a time-shared manner with a visible-light-range illumination light source and an infrared laser beam for Raman scattering, and a target image is formed with an image-capturing lens on a CIGS image sensor provided with a visible-light-range filter, a narrow-band infrared filter for Raman-scattered light measurement, and a near-band reference narrow-band infrared filter that does not let Raman-scattered light pass through. In a preliminary measurement, a plurality of normal sections are measured and averaged, and by using the same as a reference, an actual measurement of Raman scattering is performed. In displaying a visible-light image with the CIGS image sensor, superimposed display is performed to specify sections where Raman scattering is detected, and superimposed display positions are corrected in association with focusing and zooming. The displaying of the visible-light image is continued even during the detection of Raman scattering.
Abstract:
A semiconductor substrate includes a drift layer of a first layer formed of a single crystal SiC semiconductor and a buffer layer and a substrate layer of a second layer that is formed of a SiC semiconductor which includes a polycrystalline structure and is formed on the surface of the first layer, in which the second layer (12) is formed on the surface of the drift layer of the first layer by means of CVD growth, the drift layer of the first layer is formed by means of epitaxial growth, and accordingly, defects occurring at a junction interface of the semiconductor substrate including the single crystal SiC layer and the polycrystal SiC layer are suppressed, and manufacturing costs are also reduced.
Abstract:
A semiconductor substrate includes a drift layer of a first layer formed of a single crystal SiC semiconductor and a buffer layer and a substrate layer of a second layer that is formed of a SiC semiconductor which includes a polycrystalline structure and is formed on the surface of the first layer, in which the second layer (12) is formed on the surface of the drift layer of the first layer by means of CVD growth, the drift layer of the first layer is formed by means of epitaxial growth, and accordingly, defects occurring at a junction interface of the semiconductor substrate including the single crystal SiC layer and the polycrystal SiC layer are suppressed, and manufacturing costs are also reduced.
Abstract:
The inventive photoelectric conversion device includes a substrate, a lower electrode layer provided on the substrate, a CIGS compound semiconductor layer provided on the lower electrode layer as covering the lower electrode layer, and a transparent electrode layer provided on the compound semiconductor layer, wherein the compound semiconductor layer has a maximum Ga content variation of not less than 5% as measured in a layer thickness direction, and a maximum In content variation of not less than 6% as measured in the layer thickness direction.
Abstract:
A photoelectric converter according to the present invention includes a substrate, a lower electrode layer arranged on the substrate, a compound semiconductor layer of a chalcopyrite structure arranged on the lower electrode layer to cover the lower electrode layer and partitioned into a plurality of pixels, a transparent electrode layer arranged on the compound semiconductor layer, and a shielding layer arranged around each of the pixels on the compound semiconductor layer.