摘要:
Technology for configuring measurement gap patterns is disclosed. An evolved node B (eNB) can generate multiple measurement gap patterns for a user equipment (UE), wherein each measurement gap pattern indicates at least one set of consecutive subframes within a defined time period during which the UE is to perform inter-frequency measurements for a selected cell. The eNB can configure the multiple measurement gap patterns from the eNB to the UE, the UE being configured to perform the inter-frequency measurements for selected cells within a group of cells according to the multiple measurement gap patterns.
摘要:
Embodiments of UE and methods for measurement of Reference Signal Received Quality (RSRQ) are generally described herein. The UE may be configured to determine an RSRQ of a serving cell and an RSRQ of a target cell based on an indicated RSRQ measurement type. The measurement type may be received as part of a measurement configuration Information Element (IE) that indicates a first or second RSRQ measurement type. For the first RSRQ measurement type, the RSRQ may be determined based on a Received Signal Strength Indicator (RSSI) over common reference signals (CRS). For the second RSRQ measurement type, the RSRQ may be determined based on an RSSI that is based on a received power of one or more Orthogonal Frequency Division Multiplexing (OFDM) symbols received at the UE.
摘要:
An embodiment for user equipment that receives a plurality of measurement gap repetition patterns from a network. Each measurement gap repetition pattern may be assigned to a different frequency of the network. The plurality of measurement gap repetition patterns may include skipping measurement patterns. Further embodiments may include the user equipment receiving a repetition period in a measurement object frame or receiving a plurality of measurement gap repetition patterns in which the measurement gaps are non-colliding with measurement gaps of other repetition patterns assigned to the user equipment.
摘要:
An apparatus and method that allow user equipment (UE) to transmit information directly with other user equipment, using a device-to-device (D2D) mode is disclosed herein. A first D2D UE (dUE1) that wishes so communicate to a second D2D UE (dUE2) in D2D mode makes various communications requests to an Evolved Node B (eNB), which can facilitate the connection between the dUE1 and the dUE2. Among these requests are to make the D2D connection via WiFi instead of via Long Term Evolution (LTE). The eNB determines the WiFi capabilities of dUE1 and dUE2, then assigns a subset of available channels to be scanned by dUE1 and a separate subset of available channels to be scanned by dUE2. Thereafter, the eNB can assign a WiFi channel based on the scans performed by dUE1 and dUE2.
摘要:
Embodiments of apparatus and methods for signaling for resource allocation and scheduling in 5G-NR integrated access and backhaul are generally described herein. In some embodiments, User Equipment configured for reporting a channel quality indicator (CQI) index in a channel state information (CSI) reference resource assumes a physical resource block (PRB) bundling size of two PRBs to derive the CQI index.
摘要:
Embodiments of apparatus and methods for signaling for resource allocation and scheduling in 5G-NR integrated access and backhaul are generally described herein. In some embodiments, User Equipment configured for reporting a channel quality indicator (CQI) index in a channel state information (CSI) reference resource assumes a physical resource block (PRB) bundling size of two PRBs to derive the CQI index.
摘要:
Embodiments of apparatus and methods for signaling for resource allocation and scheduling in 5G-NR integrated access and backhaul are generally described herein. In some embodiments, User Equipment configured for reporting a channel quality indicator (CQI) index in a channel state information (CSI) reference resource assumes a physical resource block (PRB) bundling size of two PRBs to derive the CQI index.
摘要:
Technology for reducing coexistence interference in a multi-radio wireless device is disclosed. In one method, a determination is made if coexistence interference is occurring in the multi-radio device. The multi-radio device is then configured to not monitor physical downlink control channels for pending uplink transmissions in a wireless wide area network (WWAN) transceiver in the multi-radio device that occur during an unscheduled period of discontinuous reception (DRX).
摘要:
Embodiments of systems and methods for time domain multiplexing solutions for in-device coexistence are generally described herein. Other embodiments may be described and claimed.
摘要:
Embodiments of the present disclosure describe devices, methods, computer-readable media and systems configurations for management and/or support of multimedia broadcast multicast service (MBMS) service in a wireless communications network. An evolved Node B (eNB) may transmit MBMS assistance information to a user equipment (UE). The MBMS assistance information may identify a carrier by which one or more upcoming MBMS services are to be provided and an indicator of a carrier selection mode to be used by the UE. The UE may transmit an MBMS interest indication message including information related to one or more targeted MBMS services which the UE wants to receive.