Abstract:
A data transceiver device for near field communication is provided which includes a matching and filtering circuit connected between an antenna and a transceiver and configured to conduct filtering and impedance matching for a reception signal and a transmission signal. The matching and filtering circuit includes a variable attenuator of which the impedance varies with a frequency so that an attenuation ratio of the reception data is smaller than that of the reception carrier signal.
Abstract:
A bi-directional voltage converter of a smart card includes switching elements connected between an input node and an output node and a start-up transistors whose channel width over channel length is smaller than a channel width over channel length of the switching element. The bi-directional voltage converter stores a driving voltage applied to an output node in a storage capacitor during a booting operation and provides the voltage stored in the storage capacitor to an input node. The bi-directional voltage converter may boost another driving voltage at the input node step-wisely and may perform bi-directional voltage converting with reduced occupied area and high efficiency.
Abstract:
An internal voltage generation circuit of a smart card to perform fingerprint authentication and a smart card includes a first contact switch, a second contact switch, a switched capacitor converter and a bidirectional switched capacitor converter. The first contact switch selectively switches a contact voltage to a first node based on a first switching enable signal, in a contact mode. The second contact switch selectively switches the contact voltage to a second node based on a second switching enable signal, in the contact mode. The bidirectional switched capacitor converter steps down a first driving voltage of the first node to provide a second voltage to the second node in the contactless mode and either steps down the first driving voltage or boosts a second driving voltage of the second node based on a level of the contact voltage to provide a boosted voltage to the first node in the contact mode.
Abstract:
A bi-directional voltage converter of a smart card includes switching elements connected between an input node and an output node and a start-up transistors whose channel width over channel length is smaller than a channel width over channel length of the switching element. The bi-directional voltage converter stores a driving voltage applied to an output node in a storage capacitor during a booting operation and provides the voltage stored in the storage capacitor to an input node. The bi-directional voltage converter may boost another driving voltage at the input node step-wisely and may perform bi-directional voltage converting with reduced occupied area and high efficiency.
Abstract:
According to various embodiments of the disclosure, an electronic device may comprise: a housing forming at least a portion of an exterior of the electronic device, a printed circuit board disposed in an inner space of the housing, and an antenna structure including at least one antenna positioned in the inner space and electrically connected with the printed circuit board. The antenna structure may include a conductive plate having an opening, the opening including a first opening and a second opening extending from the first opening toward an edge of the conductive plate, a first conductive strip at least partially disposed in the second opening to form a first feed, and a second conductive strip forming a second feed different from the first feed. The electronic device may further comprise a wireless communication circuit electrically connected with the first conductive strip and/or the second conductive strip and configured to transmit and/or receive an RF signal having a frequency in a range of about 3 GHz to 300 GHz.
Abstract:
An internal voltage generation circuit of a smart card to perform fingerprint authentication and a smart card includes a first contact switch, a second contact switch, a switched capacitor converter and a bidirectional switched capacitor converter. The first contact switch selectively switches a contact voltage to a first node based on a first switching enable signal, in a contact mode. The second contact switch selectively switches the contact voltage to a second node based on a second switching enable signal, in the contact mode. The bidirectional switched capacitor converter steps down a first driving voltage of the first node to provide a second voltage to the second node in the contactless mode and either steps down the first driving voltage or boosts a second driving voltage of the second node based on a level of the contact voltage to provide a boosted voltage to the first node in the contact mode.
Abstract:
Aggressor memory cells connected to one or more aggressor wordlines are grouped into aggressor cell groups by performing a read operation with respect to the aggressor wordlines based on one or more grouping read voltages, where the aggressor wordlines are adjacent to a selected wordline corresponding to a read address among wordlines of a memory block. Selected memory cells connected to the selected wordline are grouped into a selected cell groups respectively corresponding to the aggressor cell groups. Group read conditions respectively corresponding to the selected cell groups are determined and group read operations are performed with respect to the plurality of selected cell groups based on the group read conditions. The read errors are reduced by grouping the selected memory cells into the selected cell groups according to the change of operation environments.
Abstract:
A random number generator includes a ring oscillator, an inversion selecting circuit, and controller. The ring oscillator includes an inverter chain having at least one inverter and generates an output signal. The inversion selecting circuit controlling a phase inverter configured to invert a signal of the inverter chain. The controller is configured to operate the inversion selecting circuit to provide an output of the first phase inverter to the inverter chain during a first operation mode to measure a frequency of the ring oscillator and operate the inversion selecting circuit to not provide the output of the phase inverter during a second operation mode for generating a random number.
Abstract:
According to various embodiments, an electronic device including a memory, and at least one processor may be provided, wherein the at least one processor stores, in the memory, multiple files acquired based on execution of multiple applications and information on the multiple files including first information on the multiple applications and second information associated with the multiple files, executes a first application including at least one of an authority or a function for acquiring the information on the multiple files, and displays a first execution screen of the executed first application having a partial area including multiple thumbnails associated with at least some of the multiple files and multiple icons corresponding to applications, based on at least a part of the first information included in the information on the multiple files. Various other embodiments are possible.
Abstract:
A bio-processor includes a bioelectrical impedance sensor and a digital signal processor. The bioelectrical impedance sensor measures bioelectrical impedance during a sensing time including a portion of a settling time. The digital signal processor estimates a settled bioelectrical impedance value based on changes in the measured bioelectrical impedance. The digital signal processor generates bio-data based on the settled bioelectrical impedance value.