Abstract:
A threshold switching device may include: a first electrode layer; a second electrode layer; a first insulating layer interposed between the first and second electrode layers, and provided adjacent to the first electrode layer; and a second insulating layer interposed between the first and second electrode layers, and provided adjacent to the second electrode layer, wherein the first and second insulating layers contain a plurality of neutral defects, a concentration of the plurality of neutral defects being at a maximum along a first interface between the first insulating layer and the second insulating layer, and wherein the threshold switching device has an ON or OFF state according to whether electrons are ejected from the plurality of neutral defects.
Abstract:
Provided is an electronic device including a switching element, wherein the switching element may include a first electrode, a second electrode, a switching layer interposed between the first and second electrodes, and a first amorphous semiconductor layer interposed between the first electrode and the switching layer.
Abstract:
A method for fabricating a vertical channel type nonvolatile memory device includes: alternately forming a plurality of sacrificial layers and a plurality of interlayer dielectric layers over a semiconductor substrate; etching the sacrificial layers and the interlayer dielectric layers to form a plurality of first openings for channel each of which exposes the substrate; filling the first openings to form a plurality of channels protruding from the semiconductor substrate; etching the sacrificial layers and the interlayer dielectric layers to form second openings for removal of the sacrificial layers between the channels; exposing side walls of the channels by removing the sacrificial layers exposed by the second openings; and forming a tunnel insulation layer, a charge trap layer, a charge blocking layer, and a conductive layer for gate electrode on the exposed sidewalls of the channels.
Abstract:
A semiconductor layer stack includes a first conductive layer, a dielectric layer including a high-k material, which is formed on the first conductive layer, a second conductive layer formed on the dielectric layer, and an interface control layer formed between the dielectric layer and the second conductive layer and including a leakage blocking material, a dopant material, a high bandgap material and a high work function material.
Abstract:
A method for fabricating a capacitor includes: forming a bottom electrode; forming a dielectric layer on the bottom electrode; forming a metal oxide layer including a metal having a high electronegativity on the dielectric layer; forming a sacrificial layer on the metal oxide layer to reduce the metal oxide layer to a metal layer; and forming a top electrode on the sacrificial layer to convert the reduced metal layer into a high work function interface layer.
Abstract:
A semiconductor device includes a gate dielectric layer over a substrate, a metal layer over the gate dielectric layer, a capping layer over the metal layer, wherein the capping layer includes a plurality of dipole forming elements concentrated at the interface between the metal layer and the capping layer.
Abstract:
A semiconductor layer stack includes a first conductive layer, a dielectric layer including a high-k material, which is formed on the first conductive layer, a second conductive layer formed on the dielectric layer, and an interface control layer formed between the dielectric layer and the second conductive layer and including a leakage blocking material, a dopant material, a high bandgap material and a high work function material.
Abstract:
A semiconductor device includes a first conductive layer, a second conductive layer spaced from the first conductive layer, a variable resistance layer interposed between the first and second conductive layers, and an impurity-doped layer provided over a side surface of the variable resistance layer. The variable resistance layer has a smaller width than the first and the second conductive layers.
Abstract:
An electronic device includes a semiconductor memory unit. The semiconductor memory unit includes first lines extending along a first direction; second lines extending along a second direction that intersects with the first direction; a silicon-added metal oxide layer disposed in each intersection region of the first lines and the second lines; a metal oxide layer that is disposed alternately with the silicon-added metal oxide layer in the first direction and that is disposed in a region between two adjacent second lines and over a corresponding one of the first lines over which the silicon-added metal oxide layer is disposed; and a silicon oxide layer that is disposed alternately with the silicon-added metal oxide layer in the second direction and that is disposed in a region between two first lines and under a corresponding one of the second lines under which the silicon-added metal oxide layer is disposed.
Abstract:
A method for fabricating a semiconductor device includes forming an impurity layer over a first conductive layer; forming a first metal oxide layer over the impurity layer, wherein the first metal oxide layer includes oxygen at a lower ratio than a stoichiometric ratio; diffusing an impurity from the impurity layer into the first metal oxide layer to form a first doped metal oxide layer; forming a second metal oxide layer over the first doped metal oxide layer; and forming a second conductive layer over the second metal oxide layer.