Abstract:
An integrated structure includes a support supporting at least one chip and a heat dissipating housing, attached to the chip. The housing is thermally conductive and has a thermal expansion compatible with the chip. The housing may further including closed cavities filled with a phase change material.
Abstract:
A three-dimensional integrated structure may include two assembled integrated circuits respectively including two metallic lines, and at least two cavities passing through one of the integrated circuits and opening onto two locations respectively in electrical contact with the two metallic lines. The cavities may be sized to place a measuring apparatus at the bottom of the cavities, and in electrical contact with the two locations.
Abstract:
An integrated structure includes a support supporting at least one chip and a heat dissipating housing, attached to the chip. The housing is thermally conductive and has a thermal expansion compatible with the chip. The housing may further including closed cavities filled with a phase change material.
Abstract:
A three-dimensional integrated structure may include two assembled integrated circuits respectively including two metallic lines, and at least two cavities passing through one of the integrated circuits and opening onto two locations respectively in electrical contact with the two metallic lines. The cavities may be sized to place a measuring apparatus at the bottom of the cavities, and in electrical contact with the two locations.
Abstract:
An image acquisition device includes an array of color filters and an array of microlenses over the array of color filters. At least one layer made from an inorganic dielectric material is formed between the array of color filters and the array of microlenses.
Abstract:
An image acquisition device includes an array of color filters and an array of microlenses over the array of color filters. At least one layer made from an inorganic dielectric material is formed between the array of color filters and the array of microlenses.
Abstract:
An integrated circuit chip includes a substrate die and integrated circuits and a layer incorporating a front electrical interconnect network formed on a front face of the substrate die. A local electrical connection via made of an electrically conductive material is formed in a hole of the substrate die. The via is linked to a connection portion of the electrical interconnect network. An electrical connection pillar made of an electrically conductive material is formed on a rear part of the electrical connection via. A local external protection layer at least partly covers the electrical connection via and the electrical connection pillar.
Abstract:
A three-dimensional integrated structure is formed from a first integrated circuit with a first cavity filled with a first conductive material and a second integrated circuit with a second cavity filled with a second conductive material, the second cavity facing the first cavity. The filled first cavity forms a first element and the filled second cavity forms a second element, the first and second elements separated from each other by a cavity. The first and second conductive materials have different thermal expansion coefficients. A contact detection circuit is electrically connected to the filled first and second cavities, and is operable to sense electrical contact between the first and second conductive materials in response to a change in temperature.
Abstract:
A stack of a first and second semiconductor structures is formed. Each semiconductor structure includes: a semiconductor bulk, an overlying insulating layer with metal interconnection levels, and a first surface including a conductive area. The first surfaces of semiconductor structures face each other. A first interconnection pillar extends from the first surface of the first semiconductor structure. A housing opens into the first surface of the second semiconductor structure. The housing is configured to receive the first interconnection pillar. A second interconnection pillar protrudes from a second surface of the second semiconductor structure which is opposite the first surface. The second interconnection pillar is in electric contact with the first interconnection pillar.
Abstract:
A three-dimensional integrated structure may include two assembled integrated circuits respectively including two metallic lines, and at least two cavities passing through one of the integrated circuits and opening onto two locations respectively in electrical contact with the two metallic lines. The cavities may be sized to place a measuring apparatus at the bottom of the cavities, and in electrical contact with the two locations.