Abstract:
A display device includes a substrate including a display area having a plurality of pixel areas and a non-display area located at at least one side of the display area; a pixel in each of the pixel areas; and a plurality of fan-out lines in the non-display area to form a first conductive layer. The pixel includes a pixel circuit layer including at least one transistor and a first bridge line and a second bridge line; and a display element layer on the pixel circuit layer. Each of the first and second bridge lines is electrically connected to a corresponding fan-out line from among the fan-out lines.
Abstract:
In accordance with one or more aspects, a method of reducing void formation in a solder joint may comprise applying a solder paste deposit to a substrate, placing a solder preform in the solder paste deposit, disposing a device on the solder preform and the solder paste deposit, and processing the solder paste deposit and the solder preform to form the solder joint between the device and the substrate. In some aspects, the substrate is a printed circuit board and the device is an integrated circuit package.
Abstract:
A connection structure includes a semiconductor die having a first major surface and an electrically conductive substrate having a second major surface. At least part of the second major surface is positioned facing towards and spaced at a distance from the first major surface. A galvanically deposited metallic layer extends between the first major surface and the second major surface and electrically connects the first major surface and the second major surface.
Abstract:
A multi-chip package (MCP) is provided. The MCP comprises a plurality of stacked semiconductor chips, each including a chip pad and a first insulating layer overlying the chip pad with an opening to expose a portion of the chip pad. Each chip additionally includes a pad redistribution line formed on the first insulating layer and a second insulating layer covering the pad redistribution line. A via hole is formed through the chip, the first insulating layer, a pad redistribution line and the second insulating layer. The MCP further includes a protective layer formed on the bottom of the lowest semiconductor chip. The protective layer includes a conductive pad formed opposite the bottom of the lowest semiconductor chip. A conductive bar extends through the via holes of the stacked semiconductor chips, from the conductive pad, and is electrically connected to the pad redistribution line of the stacked semiconductor chips.
Abstract:
A flip chip mounting body in which a circuit substrate having a plurality of connection terminals and an electronic part (semiconductor chip) having a plurality of electrode terminals are aligned face to face with each other, with a resin composition composed of solder powder, a resin and a convection additive being sandwiched in between, while a means such as spacers is interposed in between so as to provide a uniform gap between the two parts, or the electronic part (semiconductor chip) is placed inside a plate-shaped member having two or more protruding portions, so that the solder powder is allowed to move through boiling of the convection additive and to be self-aggregated to form a solder layer, thereby electrically connecting the connection terminals and the electrode terminals; and a mounting method for such a mounting body.
Abstract:
A multi-chip package (MCP) is provided. The MCP comprises a plurality of stacked semiconductor chips, each including a chip pad and a first insulating layer overlying the chip pad with an opening to expose a portion of the chip pad. Each chip additionally includes a pad redistribution line formed on the first insulating layer and a second insulating layer covering the pad redistribution line. A via hole is formed through the chip, the first insulating layer, a pad redistribution line and the second insulating layer. The MCP further includes a protective layer formed on the bottom of the lowest semiconductor chip. The protective layer includes a conductive pad formed opposite the bottom of the lowest semiconductor chip. A conductive bar extends through the via holes of the stacked semiconductor chips, from the conductive pad, and is electrically connected to the pad redistribution line of the stacked semiconductor chips.
Abstract:
A method of manufacturing a WBGA package includes providing a carrier having a first surface and a second surface opposite to the first surface of the carrier, wherein the carrier has a through hole extending between the first surface and the second surface of the carrier; disposing an electronic component on the second surface of the carrier, wherein the electronic component includes a first bonding pad and a second bonding pad; and electrically connecting the first bonding pad and the second bonding pad through a first bonding wire.
Abstract:
A semiconductor power arrangement includes a chip carrier having a first surface and a second surface opposite the first surface. The semiconductor power arrangement further includes a plurality of power semiconductor chips attached to the chip carrier, wherein the power semiconductor chips are inclined to the first and/or second surface of the chip carrier.
Abstract:
Microelectronic assemblies and methods for making the same are disclosed herein. In one embodiment, a method of forming a microelectronic assembly comprises assembling first and second components to have first major surfaces of the first and second components facing one another and spaced apart from one another by a predetermined spacing, the first component having first and second oppositely-facing major surfaces, a first thickness extending in a first direction between the first and second major surfaces, and a plurality of first metal connection elements at the first major surface, the second component having a plurality of second metal connection elements at the first major surface of the second component; and plating a plurality of metal connector regions each connecting and extending continuously between a respective first connection element and a corresponding second connection element opposite the respective first connection element in the first direction.
Abstract:
A stack of a first and second semiconductor structures is formed. Each semiconductor structure includes: a semiconductor bulk, an overlying insulating layer with metal interconnection levels, and a first surface including a conductive area. The first surfaces of semiconductor structures face each other. A first interconnection pillar extends from the first surface of the first semiconductor structure. A housing opens into the first surface of the second semiconductor structure. The housing is configured to receive the first interconnection pillar. A second interconnection pillar protrudes from a second surface of the second semiconductor structure which is opposite the first surface. The second interconnection pillar is in electric contact with the first interconnection pillar.