摘要:
The present invention provides a die located on a semiconductor wafer. In one embodiment, the die includes a circuit region located within a circuit perimeter of the die. In addition, the die includes a bond pad region located between the circuit perimeter and an outer perimeter of the die. Also the die includes an alignment mark located within the bond pad region.
摘要:
A method for quality and reliability assurance testing a lot of fabricated ICs comprising the steps of testing the differential Iddq of a sample of ICs at a plurality of different voltages, burning-in a sample of ICs, and then testing the functionality of the sample of ICs. The method of the present invention enables the reliability of an entire lot of ICs to be tested by determining an effective screening voltage for differential Iddq testing of the ICs, thereby eliminating the need both to burn-in and conduct post burn-in testing of all future lots of the ICs. The method of the present invention also enables fabrication facilities and workers to be engaged in other tasks rather than testing of ICs.
摘要:
A bond pad is located over active circuitry formed within an integrated circuit device. A barrier film forms the bottom surface of the upper portion of a bond pad opening which also includes vias extending through the bottom surface to form a dual damascene structure. The bond pad is resistant to stress effects such as cracking, which can be produced when bonding an external wire to the bond pad, and therefore prevents leakage currents between the bond pads and the underlying circuitry.
摘要:
A semiconductor device comprising a silicon-on-insulator (SOI) substrate including a base substrate, an insulator layer, and a silicon layer, and a trench capacitor including at least one trench formed in the silicon-on-insulator substrate and extending through the base substrate, the insulator layer and the silicon layer, wherein the at least one trench includes at least one layer of silicon dioxide formed therein. In a preferred embodiment, semiconductor material disposed in the at least one trench forms a first electrode of a semiconductor capacitor, and semiconductor material of the SOI substrate which lies adjacent to the at least one trench forms a second electrode of the capacitor.
摘要:
A method of forming low stack height transistors having controllable linewidth in an integrated circuit without channeling is disclosed. A disposable hardmask of doped glass is utilized to define the gate and subsequently protect the gate (and the underlying substrate) during ion implantation which forms the source and drains. A variety of silicided and non-silicided) structures may be formed.
摘要:
An insulating structure includes a first silicon nitride layer, a tantalum pentoxide layer formed above the first silicon nitride (SiNx) layer, and a second silicon nitride layer formed above the tantalum pentoxide (Ta2O5) layer. The SiNx cladding layers prevent diffusion of the tantalum during heating. A high dielectric constant is provided. The thermal stability of the insulating structure is improved. The insulating structure may be included in a capacitor or a shallow trench isolation structure. An exemplary capacitor is formed with a substrate, a lower electrode, the three-layer SixNy/Ta2O5/SixNy structure and an upper electrode. The lower electrode may include a TiN layer formed over an aluminum layer, or a TiN layer formed over a polysilicon layer, or a polysilicon layer having an oxide barrier layer formed on it. The upper electrode may be a TiN layer or a polysilicon layer. An exemplary shallow trench isolation structure includes the SixNy/Ta2O5/SixNy structure as a liner on the sides and bottom of a shallow trench in the surface of a substrate. The shallow trench is filled with an oxide, such as TEOS. A variety of methods may be used for fabricating devices that include the SixNy/Ta2O5/SixNy structure.
摘要:
A process for forming a dual damascene bond pad within an integrated circuit produces a bond pad which is resistant to stress effects and which therefore allows for the bond pad to be formed over active circuitry. The process includes forming a dual damascene structure by forming a bond pad opening having a barrier layer film on the bottom surface of the upper portion of the opening, and forming vias which extend downwardly through the bottom surface. The process produces a bond pad which is resistant to stress effects such as cracking which can be produced when bonding an external wire to the bond pad. Leakage currents between the bond pad and the underlying circuitry are prevented.
摘要:
The present invention includes a method for reducing dishing of an integrated circuit interconnect, comprising the steps of providing excess interconnect material above a damascene feature in a substrate and planarizing the substrate and interconnect material to obtain an interconnect in the substrate.
摘要:
Gate oxides having different thicknesses are grown on a semiconductor layer by the process which comprises forming a semiconductor layer on a substrate, growing an oxide layer on the semiconductor layer, exposing a selected area of the oxide layer, amorphizing the semiconductor layer underlying the exposed oxide layer, removing the oxide layer to expose the semiconductor layer having both amorphized and non-amorphized regions and growing gate oxide on the amorphized and non-amorphized regions of the semiconductor layer. Gate oxide grown on the amorphized regions will be thicker than gate oxide grown on the non-amorphized regions.The process of the invention obviates the need for special integrated circuit manufacturing design modifications and can be utilized to fabricate a wide variety of devices, in particular, MOS-type devices.
摘要:
A method of forming low stack height transistors having controllable linewidth in an integrated circuit without channeling is disclosed. A disposable hardmask of doped glass is utilized to define the gate and subsequently protect the gate (and the underlying substrate) during ion implantation which forms the source and drains. An anti-reflective coating helps protect against reflective gate notching. A variety of silicided and non-silicided) structures may be formed.