Abstract:
An electronic device for processing an audio signal is provided. The electronic device includes a communication circuit, a microphone, a connector and a processor. The processor identifies whether the external cable connected with a first external electronic device and including a resistor having a resistance value equal to or greater than a designated resistance value is connected to the connector, and in response to identifying that the external cable is connected to the connector, transmit a first audio signal to the first external electronic device through the external cable, and receive a second audio signal including an echo signal and a voice signal through the microphone, and cancel the echo signal corresponding to the first audio signal, based at least partly on a delay time corresponding to the external cable and a parameter related with a filter corresponding to the external cable.
Abstract:
A connection terminal device and an electronic device having the same are provided. The connection terminal device includes a connection terminal device body, and a connection terminal connected to the connection terminal device body. The connection terminal device also has a front unit disposed on a front surface of the connection terminal device body, a rear unit disposed on a rear surface of the connection terminal device body, and a support disposed on the rear surface of the connection terminal device body. When force is applied to the connection terminal, supporting force is transferred to the rear unit of the connection terminal device body.
Abstract:
A display driver integrated circuit and a method of manufacturing the same are provided. The method of manufacturing a display driver integrated circuit (DDI) including a first area, a second area, and an overlapping area in which the first area and the second area overlap each other includes forming a first pattern in the first area using a first reticle; and forming a second pattern in the second area using a second reticle, and ends of the first pattern and the second pattern are connected within the overlapping area and the first area and the second area are asymmetrically set based on the overlapping area such that the overlapping area includes only a metal line.
Abstract:
Methods of fabricating a semiconductor package may include forming a first barrier layer on a first carrier, forming a sacrificial layer, including an opening that exposes at least a portion of the first barrier layer, on the first barrier layer, and forming a second barrier layer on the first barrier layer and on the sacrificial layer. The second barrier layer may include a portion formed on the sacrificial layer. The methods may also include forming a first insulating layer in the opening and protruding beyond a top surface of the portion of the second barrier layer on the sacrificial layer, a top surface of the first insulating layer being farther from the first barrier layer than the top surface of the portion of the second barrier layer, forming a redistribution structure including a redistribution layer and a second insulating layer on the first insulating layer and on the second barrier layer, mounting a semiconductor chip on the redistribution structure, attaching a second carrier onto the semiconductor chip and removing the first carrier, removing the first barrier layer, the sacrificial layer, and the second barrier layer to expose portions of the redistribution structure, and forming solder balls, respectively, on the portions of the redistribution structure.
Abstract:
A semiconductor package includes a first redistribution layer. A plurality of posts is disposed on the first redistribution layer. A semiconductor chip is disposed on the first redistribution layer between the plurality of posts. A second redistribution layer is formed on the plurality of posts and the semiconductor chip. A first memory stack is disposed on the second redistribution layer. A height of each of the plurality of posts extends from an upper surface of the first redistribution layer to a lower surface of the second redistribution layer.
Abstract:
Provided is a method of forming a package-on-package. An encapsulation is formed to cover a wafer using a wafer level molding process. The wafer includes a plurality of semiconductor chips and a plurality of through silicon vias (TSVs) passing through the semiconductor chips. The encapsulant may have openings aligned with the TSVs. The encapsulant and the semiconductor chips are divided to form a plurality of semiconductor packages. Another semiconductor package is stacked on one selected from the semiconductor packages. The other semiconductor package is electrically connected to the TSVs.
Abstract:
A package substrate, a semiconductor package having the same, and a method for fabricating the semiconductor package. The semiconductor package includes a semiconductor chip, a package substrate, and a molding layer. The package substrate provides a region mounted with the semiconductor chip. The molding layer is configured to mold the semiconductor chip. The package substrate includes a first opening portion that provides an open region connected electrically to the semiconductor chip and extends beyond sides of the semiconductor chip to be electrically connected to the semiconductor chip.
Abstract:
Methods of fabricating a semiconductor package may include forming a first barrier layer on a first carrier, forming a sacrificial layer, including an opening that exposes at least a portion of the first barrier layer, on the first barrier layer, and forming a second barrier layer on the first barrier layer and on the sacrificial layer. The second barrier layer may include a portion formed on the sacrificial layer. The methods may also include forming a first insulating layer in the opening and protruding beyond a top surface of the portion of the second barrier layer on the sacrificial layer, a top surface of the first insulating layer being farther from the first barrier layer than the top surface of the portion of the second barrier layer, forming a redistribution structure including a redistribution layer and a second insulating layer on the first insulating layer and on the second barrier layer, mounting a semiconductor chip on the redistribution structure, attaching a second carrier onto the semiconductor chip and removing the first carrier, removing the first barrier layer, the sacrificial layer, and the second barrier layer to expose portions of the redistribution structure, and forming solder balls, respectively, on the portions of the redistribution structure.
Abstract:
A connecting device is provided that includes a movable part contacting an external contact terminal, and an elastic part connected to the movable part and configured to provide an elastic force enabling movement of the movable part. The connecting device also includes a support connected to the elastic part, and at least one protecting wall connected to the support and configured to protect the movable part from external forces. The connecting device further includes an extension extending from the at least one protecting wall in a direction along which the movable part moves and configured to bring the movable part close to the external contact terminal, and a base part provided within the extension and configured to reinforce the support.
Abstract:
Disclosed herein are an X-ray detector, in which an active area of the X-ray detector has an improved structure for a user's convenience, and an X-ray imaging apparatus having the same, The X-ray detector is configured to detect X-rays irradiated from an X-ray source, and includes: a top frame that includes a first area, a second area which is bent from the first area, and an active area which is biased from a center of the first area; a side frame that includes a top frame resting part which is formed in an outer surface which faces an outside of the X-ray detector and on which the second area rests, the side frame being coupled with the top frame to form an accommodation space; and a sensor panel disposed in the accommodation space and configured to convert the detected X-rays into an electrical signal, the sensor panel being biased from the center of the first area to correspond to the active area.