Abstract:
A modem chip communicates with a radio frequency (RF) chip and includes a digital interface configured to receive data including a plurality of samples from the RF chip based on digital communication. A logic block generates a frame synchronization signal based on a clock signal in the modem chip, provides the generated frame synchronization signal to the digital interface, and receives the plurality of samples in synchronization with the frame synchronization signal.
Abstract:
A semiconductor device includes an insulating film on a substrate and including a trench, a gate insulating film in the trench, a DIT (Density of Interface Trap) improvement film on the gate insulating film to improve a DIT of the substrate, and a first conductivity type work function adjustment film on the DIT improvement film. Related methods of forming semiconductor devices are also disclosed.
Abstract:
A baseband IC for performing digital communication with an RFIC and a device including the same. The baseband IC for performing digital communication with an RFIC includes a digital interface circuit configured to receive a frame signal including at least one sampled signal from the RFIC according to a digital interface protocol, reconstruct the at least one sampled signal from the frame signal, and transfer the reconstructed sampled signal to a baseband modem in synchronization with a reception reference signal, and a sample synchronization manager configured to generate the reception reference signal, wherein the frame signal is transmitted from the RFIC to the baseband IC in synchronization with a transmission reference signal.
Abstract:
A modem chip communicates with a radio frequency (RF) chip and includes a digital interface configured to receive data including a plurality of samples from the RF chip based on digital communication. A logic block generates a frame synchronization signal based on a clock signal in the modem chip, provides the generated frame synchronization signal to the digital interface, and receives the plurality of samples in synchronization with the frame synchronization signal.
Abstract:
A semiconductor device includes a substrate and first and second gate electrodes on the substrate. The first gate electrode includes a first gate insulation film having a bottom portion on the substrate and sidewall portions extending from the bottom portion and away from the substrate defining a first trench having a first width and a first functional film filling the first trench. The second gate electrode includes a second gate insulation film having a bottom portion on the substrate and sidewall portions extending from the bottom portion defining a second trench having a second width different from the first width, a second functional film conforming to the second gate insulation film in the second trench and defining a third trench, and a metal region in the third trench. The first width may be less than the second width.
Abstract:
A pulse width modulation (PWM) data recovery device includes a differential-to-single (DTS) circuit configured to generate a PWM bit using a differential data signal including a differential positive data signal and a differential negative data signal, and an alignment buffer configured to activate a bit lock signal by detecting a synch pattern, recover symbol data by receiving the PWM bit in synchronization with one of the differential positive data signal and the differential negative data signal, and transmit the symbol data in synchronization with a reference clock.
Abstract:
A device for generating restoration data by descrambling scramble data includes a linear feedback shift register configured to receive a first clock including a plurality of edges and sequentially generate a plurality of seeds including first to N−1th seeds (where N is a natural number of 2 or greater) respectively corresponding to first to N−1th edges among the plurality of edges, a seed calculator configured to calculate an Nth seed corresponding to an Nth edge among the plurality of edges by using the first seed, and a descrambler configured to descramble the scramble data by using the plurality of seeds generated by the linear feedback shift register and the Nth seed calculated by the seed calculator. The linear feedback shift register is further configured to generate an N+1th seed by using the Nth seed.
Abstract:
A signal receiving circuit may include a receiving equalizer and a sequence estimator. The receiving equalizer may be configured to compensate an inter-symbol interference in a signal from an external to output an equalization data, based on a receiving signal from an outside. The sequence estimator may be configured to determine a termination symbol, based on the equalization data, to perform a decoding on the receiving signal, based on the determined termination symbol, and to output the decoded receiving signal as a sequence data.
Abstract:
A receiver includes a sampler that samples first voltage levels corresponding to a first logical value of data and second voltage levels corresponding to a second logical value of the data, based on a sampling clock. An equalizer receives and adjusts the first and second voltage levels. A clock and data recovery circuit recovers the sampling clock, based on the first and second voltage levels from the equalizer. An eye opening measurement circuit: (1) tracks a first sigma level by a first step unit depending on upper voltage levels greater than a first reference voltage level among the first voltage levels, (2) tracks a second sigma level by a second step unit depending on lower voltage levels less than a second reference voltage level among the second voltage levels, and (3) calculates a difference between the first sigma level and the second sigma level.
Abstract:
A data interface includes a first sampler sampling a first bitset and a second sampler sampling a second bitset. The first bitset includes a first bit which is included in a first image data and a third bit which is included in a second image, and the second bitset includes a second bit which is included in the first image data and is a higher-order bit than the first bit and a fourth bit which is included in the second image data and is a higher-order bit than the third bit. The data interface further includes a clock generator configured to adjust a sampling timing of the first and second bitsets based on a multi-phase clock, and a clock data recovery (CDR) circuit shared by the first sampler, the second sampler and configured to output the multi-phase clock to the clock generator.