Abstract:
A memory device may include a first data line driver circuit that generates a first reference voltage set based on a first code and a second code associated with a first data line, and determines bit values of the first input data received through the first data line, based on the first reference voltage set. A second data line driver circuit may similarly generate a second reference voltage set. The reference voltages may have levels based on a decision feedback equalization (DFE) technique to reduce bit errors otherwise caused by inter symbol interference.
Abstract:
A memory system includes a logic circuit and a phase locked loop (PLL) circuit. The logic circuit determines a first frequency of a first clock using a first signal and generates a second signal for adjusting the first frequency of the first clock. The PLL circuit receives a second clock, and generates the first clock having the first frequency determined by the logic circuit, using the second clock and the second signal. When a second frequency of the second clock varies, the logic circuit determines the first frequency of the first clock such that the first frequency of the first clock generated by the PLL circuit is uniform, and operates based on the first clock having the first frequency adjusted by the second signal.
Abstract:
An equalizer includes a first pulse width controller that is configured to generate a first signal by increasing a first pulse width of a first data signal having a first logic level, the first data signal corresponding to a current data bit, a second pulse width controller that is configured to generate a second signal by increasing a second pulse width of the first data signal having a second logic level, a first sampler that is configured to generate a first sampled signal by sampling the first signal, a second sampler that is configured to generate a second sampled signal by sampling the second signal, and a multiplexer that is configured to output the first sampled signal or the second sampled signal based on a value of a previous data bit.
Abstract:
An output circuit includes first and second output drivers. The first output driver is configured to transfer a first data signal directly to an output pad in synchronization with a clock signal. The second output driver is configured to transfer a second data signal directly to the output pad in synchronization with an inversion clock signal. The clock signal and the inversion clock enable multiplexing of the first data signal and the second data signal to provide a multiplexed output data signal.
Abstract:
A clock pattern generating method of a semiconductor memory device is provided. The method includes generating the same clock pattern through a plurality of detection clock output pins when an output selection control signal is in a first state and generating clock patterns different from each other through the plurality of detection clock output pins when the output selection control signal is in a second state different from the first state.
Abstract:
A semiconductor memory device may include an impedance adjustment pad, a dummy pull-down driver and an external resistor connected in parallel between the impedance adjustment pad and a ground, a recursive code generation circuit configured to recursively generate a pull-up code and a pull-down code corresponding to a target resistance by using the external resistor and the dummy pull-down driver as a reference resistance, in an impedance calibration operation of the semiconductor memory device, a code register configured to store the generated pull-up code and the pull-down code, and a calibration control logic circuit configured to control the recursive code generation circuit during a plurality of steps in the impedance calibration operation while adjusting a resistance value of the dummy pull-down driver.
Abstract:
A memory device may include a first data line driver circuit that generates a first reference voltage set based on a first code and a second code associated with a first data line, and determines bit values of the first input data received through the first data line, based on the first reference voltage set. A second data line driver circuit may similarly generate a second reference voltage set. The reference voltages may have levels based on a decision feedback equalization (DFE) technique to reduce bit errors otherwise caused by inter symbol interference.
Abstract:
A memory device includes an internal clock generator, a deserializer, a data comparator, and a clock controller. The internal clock generator generates a plurality of internal clock signals, which have different phases from each other, by dividing a clock signal received from a host. The deserializer deserializes serial test data received from a host as pieces of internal data using the internal clock signals. The data comparator compares reference data with the internal data. The clock controller corrects a clock dividing start time point of the clock signal of the internal clock generator based on the result of the comparison of the reference data and the internal data.
Abstract:
A memory device may include a first data line driver circuit that generates a first reference voltage set based on a first code and a second code associated with a first data line, and determines bit values of the first input data received through the first data line, based on the first reference voltage set. A second data line driver circuit may similarly generate a second reference voltage set. The reference voltages may have levels based on a decision feedback equalization (DFE) technique to reduce bit errors otherwise caused by inter symbol interference.
Abstract:
A memory device may include a first data line driver circuit that generates a first reference voltage set based on a first code and a second code associated with a first data line, and determines bit values of the first input data received through the first data line, based on the first reference voltage set. A second data line driver circuit may similarly generate a second reference voltage set. The reference voltages may have levels based on a decision feedback equalization (DFE) technique to reduce bit errors otherwise caused by inter symbol interference.