Abstract:
A semiconductor device includes a channel region extending in a vertical direction perpendicular to a substrate and having a nitrogen concentration distribution, a plurality of gate electrodes arranged on a side wall of the channel region and separated from each other in a vertical direction, and a gate dielectric layer disposed between the channel region and the gate electrodes. The nitrogen concentration distribution has a first concentration near an interface between the channel region and the gate dielectric layer.
Abstract:
A solid-state image sensor of an electronic device includes a plurality of pixels arranged in a matrix form and having a plurality of phase difference pixel of the plurality of pixels. The plurality of phase difference pixels are arranged at locations of pixels that are commonly read out in a plurality of different skip readout modes.
Abstract:
An analog-to-digital converter configured to convert an analog signal into a digital signal includes a first converter configured to receive an input signal of an analog type, compare the input signal with a plurality of reference signals, select one of the plurality of reference signals based on the comparison, and output an upper bit that is a portion of the digital signal based on the selected reference signal, a second converter configured to perform an oversampling operation n times based on a residue signal indicating a difference between an upper analog signal corresponding to the upper bit value and the input signal and output an intermediate bit value of the digital signal corresponding to the first to n-th oversampling signals generated respectively during the oversampling operations performed n times, and a third converter configured to output a lower bit value of the digital signal corresponding to the n-th oversampling signal.
Abstract:
An analog-to-digital converter configured to convert an analog signal into a digital signal includes a first converter configured to receive an input signal of an analog type, compare the input signal with a plurality of reference signals, select one of the plurality of reference signals based on the comparison, and output an upper bit that is a portion of the digital signal based on the selected reference signal, a second converter configured to perform an oversampling operation n times based on a residue signal indicating a difference between an upper analog signal corresponding to the upper bit value and the input signal and output an intermediate bit value of the digital signal corresponding to the first to n-th oversampling signals generated respectively during the oversampling operations performed n times, and a third converter configured to output a lower bit value of the digital signal corresponding to the n-th oversampling signal.
Abstract:
In some embodiments, a method of operating an image sensor supporting a low speed mode and a high speed mode includes: outputting a first set of output signals from a first pixel group to a first output line group by enabling, during a first period of the low speed mode, a first load circuit group connected to the first set of output signals; outputting a second set of output signals from a second pixel group to a second output line group by enabling, during a second period of the low speed mode different from the first period, a second load circuit group connected to the second set of output signals; and disabling the second load circuit group during at least a part of the first period.
Abstract:
A solid-state image sensor of an electronic device includes a plurality of pixels arranged in a matrix form and having a plurality of phase difference pixel of the plurality of pixels. The plurality of phase difference pixels are arranged at locations of pixels that are commonly read out in a plurality of different skip readout modes.
Abstract:
A semiconductor device includes a channel region extending in a vertical direction perpendicular to a substrate and having a nitrogen concentration distribution, a plurality of gate electrodes arranged on a side wall of the channel region and separated from each other in a vertical direction, and a gate dielectric layer disposed between the channel region and the gate electrodes. The nitrogen concentration distribution has a first concentration near an interface between the channel region and the gate dielectric layer.
Abstract:
A semiconductor device includes a channel region extending in a vertical direction perpendicular to a substrate and having a nitrogen concentration distribution, a plurality of gate electrodes arranged on a side wall of the channel region and separated from each other in a vertical direction, and a gate dielectric layer disposed between the channel region and the gate electrodes. The nitrogen concentration distribution has a first concentration near an interface between the channel region and the gate dielectric layer.