摘要:
A semiconductor metalization barrier, and manufacturing method therefor, is provided which is deposited from an aqueous solution containing the Period 4 transition metals of chromium, nickel, and copper deposited on a palladium-activated copper bonding pad.
摘要:
A method is provided for forming conductive layers in semiconductor channels and vias by using ramped current densities for the electroplating process. The lower density currents are used initially to deposit a fine grain conductive layer in the vias and then higher densities are used to deposit a large grain conductive layer in the channel.
摘要:
A method is provided for forming conductive layers in semiconductor channels and vias by using ramped current densities for the electroplating process. The lower density currents are used initially to deposit a fine grain conductive layer in the vias and then higher densities are used to deposit a large grain conductive layer in the channel.
摘要:
A semiconductor metalization barrier, and manufacturing method therefor, is provided which is deposited from an aqueous solution containing the Period 4 transition metals of chromium, nickel, and copper deposited on a palladium-activated copper bonding pad.
摘要:
A method is provided to enhance endpoint detection during via etching in the processing of a semiconductor wafer. The method includes forming a first process layer and a second process layer above the first process layer. A first masking layer is formed above at least a portion of the second process layer, leaving an outer edge portion of at least the second process layer exposed. Thereafter, an etching process is used to remove the outer edge portion of the first and second layers. Once the etching is complete, the first masking layer is removed, and a second masking layer is formed above the second process layer. The second masking layer is patterned to expose portions of the first process layer, and then an etching process substantially removes the exposed portions of the first process layer to form the vias.
摘要:
A method is provided for forming seed layers in a channel or via by applying a high bias to the material of the seed layer during deposition. This sputters off the seed layer overhang in order to reduce the electrical resistance of the seed layer, maintain its barrier effectiveness and enhance the subsequent filling of the channel or via by conductive materials.
摘要:
A method for producing a dielectric layer in a semiconductor product includes two steps. The first step is forming a fluorinated layer (e.g. SiOF or fluorosilicate glass ("FSG")) which includes a material formed in part with fluorine. The second step is forming a fill layer (e.g. SiO.sub.2) above the fluorinated layer. The fill layer is substantially free of materials formed in part with fluorine. A top surface of the fill layer can be planarized. Surface treatments and oxide caps can be applied to the planarized surface to form fluorine barriers if part of the fluorinated layer is exposed to higher layers. Such a method, and a semiconductor device or integrated circuit manufactured according to the method, allow the dielectric constant of an inter-layer dielectric ("ILD") to be lowered while also minimizing the complexity and expense of the manufacturing process.
摘要:
A method for implanting copper conductive layers in channel or via openings with alloying elements, such as magnesium, boron, tin, and zirconium. The implantation is performed after conductive layer chemical-mechanical-polishing (CMP) using a surface barrier layer as an implant barrier. With the surface barrier layer being removed by barrier layer CMP, this allows directed, heavy implantation of the conductive layer with the alloying elements.
摘要:
Methods are provided for forming an integrated circuit. In an embodiment, the method includes forming a sacrificial mandrel overlying a base substrate. Sidewall spacers are formed adjacent sidewalls of the sacrificial mandrel. The sidewall spacers have a lower portion that is proximal to the base substrate, and the lower portion has a substantially perpendicular outer surface relative to the base substrate. The sidewall spacers also have an upper portion that is spaced from the base substrate. The upper portion has a sloped outer surface. A first dielectric layer is formed overlying the base substrate and is conformal to at least a portion of the upper portion of the sidewall spacers. The upper portion of the sidewall spacers is removed after forming the first dielectric layer to form a recess having a re-entrant profile in the first dielectric layer. The re-entrant profile of the recess is straightened.
摘要:
During the patterning of sophisticated metallization systems, a damaged surface portion of a sensitive low-k dielectric material may be efficiently replaced by a well-controlled dielectric material, thereby enabling an adaptation of the material characteristics and/or the layer thickness of the replacement material. Thus, established lithography and etch techniques may be used in combination with reduced critical dimensions and dielectric materials of even further reduced permittivity.